alenatz/BioBERT-BioCause-oversample
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- recall
|
10 |
+
- precision
|
11 |
+
model-index:
|
12 |
+
- name: biobert-biocause-trainer-oversample
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# biobert-biocause-trainer-oversample
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.7149
|
24 |
+
- Accuracy: 0.8457
|
25 |
+
- F1: 0.6735
|
26 |
+
- Recall: 0.6226
|
27 |
+
- Precision: 0.7333
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 3
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
|
58 |
+
| 0.5227 | 0.07 | 25 | 0.5550 | 0.7765 | 0.2320 | 0.1321 | 0.9545 |
|
59 |
+
| 0.6695 | 0.14 | 50 | 0.5736 | 0.7315 | 0.5640 | 0.6792 | 0.4821 |
|
60 |
+
| 0.5501 | 0.22 | 75 | 0.5333 | 0.7621 | 0.5595 | 0.5912 | 0.5311 |
|
61 |
+
| 0.5193 | 0.29 | 100 | 0.4489 | 0.8119 | 0.48 | 0.3396 | 0.8182 |
|
62 |
+
| 0.5462 | 0.36 | 125 | 0.3952 | 0.8392 | 0.6269 | 0.5283 | 0.7706 |
|
63 |
+
| 0.4863 | 0.43 | 150 | 0.4829 | 0.8232 | 0.6541 | 0.6541 | 0.6541 |
|
64 |
+
| 0.4607 | 0.5 | 175 | 0.4429 | 0.8360 | 0.5641 | 0.4151 | 0.88 |
|
65 |
+
| 0.4302 | 0.58 | 200 | 0.4701 | 0.8103 | 0.6529 | 0.6981 | 0.6133 |
|
66 |
+
| 0.3965 | 0.65 | 225 | 0.5427 | 0.8071 | 0.6685 | 0.7610 | 0.5961 |
|
67 |
+
| 0.3838 | 0.72 | 250 | 0.4431 | 0.8296 | 0.6624 | 0.6541 | 0.6710 |
|
68 |
+
| 0.4917 | 0.79 | 275 | 0.6932 | 0.7203 | 0.6027 | 0.8302 | 0.4731 |
|
69 |
+
| 0.3751 | 0.86 | 300 | 0.4731 | 0.7781 | 0.6330 | 0.7484 | 0.5484 |
|
70 |
+
| 0.3926 | 0.94 | 325 | 0.4237 | 0.8424 | 0.6975 | 0.7107 | 0.6848 |
|
71 |
+
| 0.3654 | 1.01 | 350 | 0.3528 | 0.8521 | 0.7032 | 0.6855 | 0.7219 |
|
72 |
+
| 0.2255 | 1.08 | 375 | 0.6046 | 0.8392 | 0.6835 | 0.6792 | 0.6879 |
|
73 |
+
| 0.4107 | 1.15 | 400 | 0.4417 | 0.8569 | 0.6716 | 0.5723 | 0.8125 |
|
74 |
+
| 0.3405 | 1.22 | 425 | 0.4378 | 0.8376 | 0.6667 | 0.6352 | 0.7014 |
|
75 |
+
| 0.2532 | 1.3 | 450 | 0.5072 | 0.8264 | 0.6824 | 0.7296 | 0.6409 |
|
76 |
+
| 0.2366 | 1.37 | 475 | 0.5545 | 0.8232 | 0.6667 | 0.6918 | 0.6433 |
|
77 |
+
| 0.2102 | 1.44 | 500 | 0.5370 | 0.8633 | 0.6996 | 0.6226 | 0.7984 |
|
78 |
+
| 0.1455 | 1.51 | 525 | 0.6646 | 0.8553 | 0.6980 | 0.6541 | 0.7482 |
|
79 |
+
| 0.2918 | 1.59 | 550 | 0.6595 | 0.8296 | 0.6826 | 0.7170 | 0.6514 |
|
80 |
+
| 0.2585 | 1.66 | 575 | 0.6265 | 0.8392 | 0.6753 | 0.6541 | 0.6980 |
|
81 |
+
| 0.3427 | 1.73 | 600 | 0.5371 | 0.8376 | 0.6892 | 0.7044 | 0.6747 |
|
82 |
+
| 0.1538 | 1.8 | 625 | 0.6054 | 0.8585 | 0.6788 | 0.5849 | 0.8087 |
|
83 |
+
| 0.2565 | 1.87 | 650 | 0.5814 | 0.8601 | 0.6926 | 0.6164 | 0.7903 |
|
84 |
+
| 0.255 | 1.95 | 675 | 0.5811 | 0.8489 | 0.6968 | 0.6792 | 0.7152 |
|
85 |
+
| 0.2814 | 2.02 | 700 | 0.5238 | 0.8489 | 0.6846 | 0.6415 | 0.7338 |
|
86 |
+
| 0.0351 | 2.09 | 725 | 0.6550 | 0.8505 | 0.7010 | 0.6855 | 0.7171 |
|
87 |
+
| 0.0849 | 2.16 | 750 | 0.7147 | 0.8473 | 0.6780 | 0.6289 | 0.7353 |
|
88 |
+
| 0.145 | 2.23 | 775 | 0.8233 | 0.8344 | 0.7014 | 0.7610 | 0.6505 |
|
89 |
+
| 0.0889 | 2.31 | 800 | 0.7376 | 0.8505 | 0.7103 | 0.7170 | 0.7037 |
|
90 |
+
| 0.0968 | 2.38 | 825 | 0.7388 | 0.8521 | 0.6783 | 0.6101 | 0.7638 |
|
91 |
+
| 0.1507 | 2.45 | 850 | 0.7317 | 0.8537 | 0.6762 | 0.5975 | 0.7787 |
|
92 |
+
| 0.134 | 2.52 | 875 | 0.7362 | 0.8392 | 0.6795 | 0.6667 | 0.6928 |
|
93 |
+
| 0.1088 | 2.59 | 900 | 0.6987 | 0.8457 | 0.68 | 0.6415 | 0.7234 |
|
94 |
+
| 0.0854 | 2.67 | 925 | 0.7236 | 0.8553 | 0.6897 | 0.6289 | 0.7634 |
|
95 |
+
| 0.136 | 2.74 | 950 | 0.7118 | 0.8473 | 0.6844 | 0.6478 | 0.7254 |
|
96 |
+
| 0.0571 | 2.81 | 975 | 0.7155 | 0.8473 | 0.6780 | 0.6289 | 0.7353 |
|
97 |
+
| 0.1579 | 2.88 | 1000 | 0.7195 | 0.8521 | 0.6913 | 0.6478 | 0.7410 |
|
98 |
+
| 0.1093 | 2.95 | 1025 | 0.7146 | 0.8473 | 0.6780 | 0.6289 | 0.7353 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.37.2
|
104 |
+
- Pytorch 2.3.1
|
105 |
+
- Datasets 2.19.1
|
106 |
+
- Tokenizers 0.15.1
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-cased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"problem_type": "single_label_classification",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.37.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 28996
|
27 |
+
}
|
logs/events.out.tfevents.1719949660.Alenas-MBP-2.9938.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be66aebaca5437fb7fe9f991d16c06befbee332fb15aa8a27dc694fe68ff3eee
|
3 |
+
size 30451
|
logs/events.out.tfevents.1719982793.Alenas-MBP-2.11005.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3b597759fb149935bf528909c0269756ec8cd767c01c186162e5d8a37e0c7b7
|
3 |
+
size 30451
|
logs/events.out.tfevents.1719992547.Alenas-MacBook-Pro-2.local.11005.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d2f47560ed96c9caa2217daae1260ec74492b1b57e3546e09c938e04180f8c6
|
3 |
+
size 560
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9ee3ec53434f9c5f87f25bfe94dbfcbc27a734e513403a17e73ea185dac490a
|
3 |
+
size 433270768
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:365bfd140626e5c8d6e137164b660ee6a9e9409c0dac38a24006db248905186c
|
3 |
+
size 4664
|