alejndrojavier commited on
Commit
2e555fd
1 Parent(s): 403442f

End of training

Browse files
Files changed (1) hide show
  1. README.md +7 -8
README.md CHANGED
@@ -18,9 +18,9 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.3245
22
- - Accuracy: 0.9029
23
- - F1: 0.9382
24
 
25
  ## Model description
26
 
@@ -46,16 +46,15 @@ The following hyperparameters were used during training:
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_steps: 500
49
- - num_epochs: 4
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
55
- | 0.5048 | 1.0 | 175 | 0.3577 | 0.8771 | 0.9225 |
56
- | 0.2879 | 2.0 | 350 | 0.2603 | 0.8986 | 0.9350 |
57
- | 0.2345 | 3.0 | 525 | 0.2564 | 0.91 | 0.9421 |
58
- | 0.1868 | 4.0 | 700 | 0.3245 | 0.9029 | 0.9382 |
59
 
60
 
61
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5030
22
+ - Accuracy: 0.9086
23
+ - F1: 0.9401
24
 
25
  ## Model description
26
 
 
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 3
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
55
+ | 0.1075 | 1.0 | 175 | 0.3345 | 0.9129 | 0.9440 |
56
+ | 0.1063 | 2.0 | 350 | 0.4080 | 0.9014 | 0.9359 |
57
+ | 0.0262 | 3.0 | 525 | 0.5030 | 0.9086 | 0.9401 |
 
58
 
59
 
60
  ### Framework versions