alejandralopezsosa
commited on
Commit
·
ea5bbeb
1
Parent(s):
220905e
init commit
Browse files- README.md +204 -0
- adapter_config.json +33 -0
- adapter_model.safetensors +3 -0
- config.json +20 -0
- configuration_glm2.py +37 -0
- extension_glm2.py +80 -0
- modeling_glm2.py +467 -0
README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
datasets:
|
4 |
+
- InstaDeepAI/nucleotide_transformer_downstream_tasks_revised
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
base_model:
|
8 |
+
- tattabio/gLM2_150M
|
9 |
+
---
|
10 |
+
|
11 |
+
# Model Card for Model ID
|
12 |
+
|
13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
|
21 |
+
<!-- Provide a longer summary of what this model is. -->
|
22 |
+
|
23 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
24 |
+
|
25 |
+
- **Developed by:** [More Information Needed]
|
26 |
+
- **Funded by [optional]:** [More Information Needed]
|
27 |
+
- **Shared by [optional]:** [More Information Needed]
|
28 |
+
- **Model type:** [More Information Needed]
|
29 |
+
- **Language(s) (NLP):** [More Information Needed]
|
30 |
+
- **License:** [More Information Needed]
|
31 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
32 |
+
|
33 |
+
### Model Sources [optional]
|
34 |
+
|
35 |
+
<!-- Provide the basic links for the model. -->
|
36 |
+
|
37 |
+
- **Repository:** [More Information Needed]
|
38 |
+
- **Paper [optional]:** [More Information Needed]
|
39 |
+
- **Demo [optional]:** [More Information Needed]
|
40 |
+
|
41 |
+
## Uses
|
42 |
+
|
43 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
44 |
+
|
45 |
+
### Direct Use
|
46 |
+
|
47 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Downstream Use [optional]
|
52 |
+
|
53 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
### Out-of-Scope Use
|
58 |
+
|
59 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
## Bias, Risks, and Limitations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
66 |
+
|
67 |
+
[More Information Needed]
|
68 |
+
|
69 |
+
### Recommendations
|
70 |
+
|
71 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
72 |
+
|
73 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
74 |
+
|
75 |
+
## How to Get Started with the Model
|
76 |
+
|
77 |
+
Use the code below to get started with the model.
|
78 |
+
|
79 |
+
[More Information Needed]
|
80 |
+
|
81 |
+
## Training Details
|
82 |
+
|
83 |
+
### Training Data
|
84 |
+
|
85 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
86 |
+
|
87 |
+
[More Information Needed]
|
88 |
+
|
89 |
+
### Training Procedure
|
90 |
+
|
91 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
92 |
+
|
93 |
+
#### Preprocessing [optional]
|
94 |
+
|
95 |
+
[More Information Needed]
|
96 |
+
|
97 |
+
|
98 |
+
#### Training Hyperparameters
|
99 |
+
|
100 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
101 |
+
|
102 |
+
#### Speeds, Sizes, Times [optional]
|
103 |
+
|
104 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
105 |
+
|
106 |
+
[More Information Needed]
|
107 |
+
|
108 |
+
## Evaluation
|
109 |
+
|
110 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
111 |
+
|
112 |
+
### Testing Data, Factors & Metrics
|
113 |
+
|
114 |
+
#### Testing Data
|
115 |
+
|
116 |
+
<!-- This should link to a Dataset Card if possible. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Factors
|
121 |
+
|
122 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
#### Metrics
|
127 |
+
|
128 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
129 |
+
|
130 |
+
[More Information Needed]
|
131 |
+
|
132 |
+
### Results
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
#### Summary
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
## Model Examination [optional]
|
141 |
+
|
142 |
+
<!-- Relevant interpretability work for the model goes here -->
|
143 |
+
|
144 |
+
[More Information Needed]
|
145 |
+
|
146 |
+
## Environmental Impact
|
147 |
+
|
148 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
149 |
+
|
150 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
151 |
+
|
152 |
+
- **Hardware Type:** [More Information Needed]
|
153 |
+
- **Hours used:** [More Information Needed]
|
154 |
+
- **Cloud Provider:** [More Information Needed]
|
155 |
+
- **Compute Region:** [More Information Needed]
|
156 |
+
- **Carbon Emitted:** [More Information Needed]
|
157 |
+
|
158 |
+
## Technical Specifications [optional]
|
159 |
+
|
160 |
+
### Model Architecture and Objective
|
161 |
+
|
162 |
+
[More Information Needed]
|
163 |
+
|
164 |
+
### Compute Infrastructure
|
165 |
+
|
166 |
+
[More Information Needed]
|
167 |
+
|
168 |
+
#### Hardware
|
169 |
+
|
170 |
+
[More Information Needed]
|
171 |
+
|
172 |
+
#### Software
|
173 |
+
|
174 |
+
[More Information Needed]
|
175 |
+
|
176 |
+
## Citation [optional]
|
177 |
+
|
178 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
179 |
+
|
180 |
+
**BibTeX:**
|
181 |
+
|
182 |
+
[More Information Needed]
|
183 |
+
|
184 |
+
**APA:**
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## Glossary [optional]
|
189 |
+
|
190 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
191 |
+
|
192 |
+
[More Information Needed]
|
193 |
+
|
194 |
+
## More Information [optional]
|
195 |
+
|
196 |
+
[More Information Needed]
|
197 |
+
|
198 |
+
## Model Card Authors [optional]
|
199 |
+
|
200 |
+
[More Information Needed]
|
201 |
+
|
202 |
+
## Model Card Contact
|
203 |
+
|
204 |
+
[More Information Needed]
|
adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": {
|
4 |
+
"base_model_class": "gLM2ForSequenceClassification",
|
5 |
+
"parent_library": "__main__"
|
6 |
+
},
|
7 |
+
"base_model_name_or_path": "tattabio/gLM2_150M",
|
8 |
+
"bias": "none",
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 8,
|
17 |
+
"lora_dropout": 0.5,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [
|
21 |
+
"score"
|
22 |
+
],
|
23 |
+
"peft_type": "LORA",
|
24 |
+
"r": 16,
|
25 |
+
"rank_pattern": {},
|
26 |
+
"revision": null,
|
27 |
+
"target_modules": [
|
28 |
+
"wqkv"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6bfd6eb4d53b770e6605905f0ab72a5d6aa29addc6d589302a539516b21a4d8
|
3 |
+
size 4926096
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"gLM2ForSequenceClassification"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "extension_glm2.gLM2ClassicationConfig",
|
7 |
+
"AutoModelForSequenceClassification": "extension_glm2.gLM2ForSequenceClassification"
|
8 |
+
},
|
9 |
+
"depth": 30,
|
10 |
+
"dim": 640,
|
11 |
+
"ffn_dim_multiplier": null,
|
12 |
+
"heads": 10,
|
13 |
+
"model_type": "gLM2",
|
14 |
+
"norm_eps": 1e-05,
|
15 |
+
"num_classes": 2,
|
16 |
+
"swiglu_multiple_of": 256,
|
17 |
+
"torch_dtype": "float32",
|
18 |
+
"transformers_version": "4.44.2",
|
19 |
+
"vocab_size": 37
|
20 |
+
}
|
configuration_glm2.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""gLM2 model configuration"""
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
from transformers import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class gLM2Config(PretrainedConfig):
|
11 |
+
model_type = "gLM2"
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
dim: int = 640,
|
16 |
+
depth: int = 30,
|
17 |
+
heads: int = 10,
|
18 |
+
vocab_size: int = 37,
|
19 |
+
swiglu_multiple_of: int = 256,
|
20 |
+
ffn_dim_multiplier: Optional[float] = None,
|
21 |
+
norm_eps: float = 1e-5,
|
22 |
+
**kwargs
|
23 |
+
):
|
24 |
+
super().__init__(**kwargs)
|
25 |
+
self.dim = dim
|
26 |
+
self.depth = depth
|
27 |
+
self.heads = heads
|
28 |
+
self.vocab_size = vocab_size
|
29 |
+
self.swiglu_multiple_of = swiglu_multiple_of
|
30 |
+
self.ffn_dim_multiplier = ffn_dim_multiplier
|
31 |
+
self.norm_eps = norm_eps
|
32 |
+
|
33 |
+
self.auto_map = {
|
34 |
+
"AutoConfig": "configuration_glm2.gLM2Config",
|
35 |
+
"AutoModel": "modeling_glm2.gLM2Model",
|
36 |
+
"AutoModelForMaskedLM": "modeling_glm2.gLM2ForMaskedLM"
|
37 |
+
}
|
extension_glm2.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers.modeling_outputs import (
|
4 |
+
BaseModelOutput,
|
5 |
+
SequenceClassifierOutput,
|
6 |
+
)
|
7 |
+
|
8 |
+
from typing import Optional, Union, Tuple
|
9 |
+
from .configuration_glm2 import gLM2Config
|
10 |
+
from .modeling_glm2 import gLM2Model, gLM2PreTrainedModel
|
11 |
+
|
12 |
+
from transformers import PretrainedConfig
|
13 |
+
from typing import List
|
14 |
+
|
15 |
+
class gLM2ClassicationConfig(gLM2Config):
|
16 |
+
def __init__(self, num_classes: int = 2, **kwargs):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
|
19 |
+
self.num_classes = num_classes
|
20 |
+
|
21 |
+
self.auto_map['AutoModelForSequenceClassification'] = "extension_glm2.gLM2ForSequenceClassification"
|
22 |
+
|
23 |
+
class gLM2ForSequenceClassification(gLM2PreTrainedModel):
|
24 |
+
config_class = gLM2ClassicationConfig
|
25 |
+
|
26 |
+
def __init__(self, config: gLM2ClassicationConfig):
|
27 |
+
super().__init__(config)
|
28 |
+
|
29 |
+
self.glm2 = gLM2Model(config)
|
30 |
+
|
31 |
+
self.score = nn.Linear(config.dim, config.num_classes, bias=False)
|
32 |
+
|
33 |
+
self.post_init()
|
34 |
+
|
35 |
+
def get_input_embeddings(self):
|
36 |
+
return self.glm2.tok_embeddings
|
37 |
+
|
38 |
+
def set_input_embeddings(self, value):
|
39 |
+
self.glm2.tok_embeddings = value
|
40 |
+
|
41 |
+
def forward(
|
42 |
+
self,
|
43 |
+
input_ids: torch.Tensor,
|
44 |
+
attention_mask: Optional[torch.Tensor] = None,
|
45 |
+
labels: Optional[torch.LongTensor] = None,
|
46 |
+
output_hidden_states: Optional[bool] = None,
|
47 |
+
return_dict: Optional[bool] = None,
|
48 |
+
**kwargs,
|
49 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
50 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
51 |
+
|
52 |
+
outputs = self.glm2(
|
53 |
+
input_ids,
|
54 |
+
attention_mask=attention_mask,
|
55 |
+
output_hidden_states=output_hidden_states,
|
56 |
+
return_dict=return_dict,
|
57 |
+
)
|
58 |
+
token_embeddings = outputs[0]
|
59 |
+
|
60 |
+
# use <+> as CLS token
|
61 |
+
cls_token = token_embeddings[:, 0, :]
|
62 |
+
|
63 |
+
logits = self.score(cls_token)
|
64 |
+
|
65 |
+
loss = None
|
66 |
+
if labels is not None:
|
67 |
+
labels = labels.to(logits.device)
|
68 |
+
|
69 |
+
loss_fct = nn.CrossEntropyLoss()
|
70 |
+
loss = loss_fct(logits.view(-1, self.config.num_classes), labels.view(-1))
|
71 |
+
|
72 |
+
if not return_dict:
|
73 |
+
output = (logits,) + outputs[2:]
|
74 |
+
return ((loss,) + output) if loss is not None else output
|
75 |
+
|
76 |
+
return SequenceClassifierOutput(
|
77 |
+
loss=loss,
|
78 |
+
logits=logits,
|
79 |
+
hidden_states=outputs.hidden_states,
|
80 |
+
)
|
modeling_glm2.py
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch gLM2 model.
|
2 |
+
|
3 |
+
Some modules adapted from:
|
4 |
+
https://github.com/meta-llama/llama/blob/main/llama/model.py
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
from typing import Optional, Tuple, Union
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
BaseModelOutput,
|
14 |
+
MaskedLMOutput,
|
15 |
+
)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import logging
|
18 |
+
from .configuration_glm2 import gLM2Config
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
def rotate_half(x, interleaved=False):
|
24 |
+
if not interleaved:
|
25 |
+
x1, x2 = x.chunk(2, dim=-1)
|
26 |
+
return torch.cat((-x2, x1), dim=-1)
|
27 |
+
else:
|
28 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
29 |
+
return rearrange(
|
30 |
+
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
35 |
+
"""
|
36 |
+
x: (batch_size, seqlen, nheads, headdim)
|
37 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
38 |
+
"""
|
39 |
+
ro_dim = cos.shape[-1] * 2
|
40 |
+
assert ro_dim <= x.shape[-1]
|
41 |
+
seqlen = x.shape[1]
|
42 |
+
cos, sin = cos[:seqlen], sin[:seqlen]
|
43 |
+
cos = repeat(
|
44 |
+
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
45 |
+
)
|
46 |
+
sin = repeat(
|
47 |
+
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
48 |
+
)
|
49 |
+
return torch.cat(
|
50 |
+
[
|
51 |
+
x[..., :ro_dim] * cos +
|
52 |
+
rotate_half(x[..., :ro_dim], interleaved) * sin,
|
53 |
+
x[..., ro_dim:],
|
54 |
+
],
|
55 |
+
dim=-1,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
class RotaryEmbedding(torch.nn.Module):
|
60 |
+
"""
|
61 |
+
Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py.
|
62 |
+
Changed to use the torch version of apply_rotary_emb_func.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
dim: int,
|
68 |
+
base=10000.0,
|
69 |
+
interleaved=False,
|
70 |
+
scale_base=None,
|
71 |
+
pos_idx_in_fp32=True,
|
72 |
+
device=None,
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
self.dim = dim
|
76 |
+
self.base = float(base)
|
77 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
78 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
79 |
+
inv_freq = self._compute_inv_freq(device)
|
80 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
81 |
+
self.interleaved = interleaved
|
82 |
+
self.scale_base = scale_base
|
83 |
+
scale = (
|
84 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
85 |
+
/ (1.4 * dim)
|
86 |
+
if scale_base is not None
|
87 |
+
else None
|
88 |
+
)
|
89 |
+
self.register_buffer("scale", scale, persistent=False)
|
90 |
+
|
91 |
+
self._seq_len_cached = 0
|
92 |
+
self._cos_cached = None
|
93 |
+
self._sin_cached = None
|
94 |
+
self._cos_k_cached = None
|
95 |
+
self._sin_k_cached = None
|
96 |
+
|
97 |
+
def _compute_inv_freq(self, device=None):
|
98 |
+
return 1.0 / (
|
99 |
+
self.base
|
100 |
+
** (
|
101 |
+
torch.arange(0, self.dim, 2, device=device,
|
102 |
+
dtype=torch.float32)
|
103 |
+
/ self.dim
|
104 |
+
)
|
105 |
+
)
|
106 |
+
|
107 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
108 |
+
# Reset the tables if the sequence length has changed,
|
109 |
+
# if we're on a new device (possibly due to tracing for instance),
|
110 |
+
# or if we're switching from inference mode to training
|
111 |
+
if (
|
112 |
+
seqlen > self._seq_len_cached
|
113 |
+
or self._cos_cached is None
|
114 |
+
or self._cos_cached.device != device
|
115 |
+
or self._cos_cached.dtype != dtype
|
116 |
+
or (self.training and self._cos_cached.is_inference())
|
117 |
+
):
|
118 |
+
self._seq_len_cached = seqlen
|
119 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
120 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
121 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
122 |
+
if self.pos_idx_in_fp32:
|
123 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
124 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
125 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
126 |
+
# cos & sin output to change significantly.
|
127 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
128 |
+
if self.inv_freq.dtype != torch.float32:
|
129 |
+
inv_freq = self._compute_inv_freq(device=device)
|
130 |
+
else:
|
131 |
+
inv_freq = self.inv_freq
|
132 |
+
else:
|
133 |
+
t = torch.arange(seqlen, device=device,
|
134 |
+
dtype=self.inv_freq.dtype)
|
135 |
+
inv_freq = self.inv_freq
|
136 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
137 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
138 |
+
freqs = torch.outer(t, inv_freq)
|
139 |
+
if self.scale is None:
|
140 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
141 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
142 |
+
else:
|
143 |
+
power = (
|
144 |
+
torch.arange(
|
145 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
146 |
+
)
|
147 |
+
- seqlen // 2
|
148 |
+
) / self.scale_base
|
149 |
+
scale = self.scale.to(device=power.device) ** rearrange(
|
150 |
+
power, "s -> s 1"
|
151 |
+
)
|
152 |
+
# We want the multiplication by scale to happen in fp32
|
153 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
154 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
155 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
156 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
157 |
+
|
158 |
+
def forward(
|
159 |
+
self,
|
160 |
+
qkv: torch.Tensor,
|
161 |
+
max_seqlen: Optional[int] = None,
|
162 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
163 |
+
"""
|
164 |
+
qkv: (batch, seqlen, 3, nheads, headdim)
|
165 |
+
"""
|
166 |
+
seqlen = qkv.shape[1]
|
167 |
+
if seqlen > self._seq_len_cached:
|
168 |
+
self._update_cos_sin_cache(
|
169 |
+
seqlen, device=qkv.device, dtype=qkv.dtype)
|
170 |
+
elif max_seqlen is not None:
|
171 |
+
self._update_cos_sin_cache(
|
172 |
+
max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
173 |
+
q_rot = apply_rotary_emb_torch(
|
174 |
+
qkv[:, :, 0], self._cos_cached, self._sin_cached, self.interleaved
|
175 |
+
)
|
176 |
+
k_rot = apply_rotary_emb_torch(
|
177 |
+
qkv[:, :, 1], self._cos_cached, self._sin_cached, self.interleaved
|
178 |
+
)
|
179 |
+
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
180 |
+
|
181 |
+
|
182 |
+
# @torch.jit.script
|
183 |
+
def rmsnorm_func(hidden_states, weight, variance_epsilon):
|
184 |
+
"""Apply the root mean square normalization."""
|
185 |
+
input_dtype = hidden_states.dtype
|
186 |
+
hidden_states = hidden_states.to(torch.float32)
|
187 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
188 |
+
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
|
189 |
+
return (weight * hidden_states).to(input_dtype)
|
190 |
+
|
191 |
+
|
192 |
+
class RMSNorm(nn.Module):
|
193 |
+
"""Root mean square normalization."""
|
194 |
+
|
195 |
+
def __init__(self, dim, eps=1e-6):
|
196 |
+
super().__init__()
|
197 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
198 |
+
self.register_buffer(
|
199 |
+
"variance_epsilon",
|
200 |
+
torch.tensor(eps),
|
201 |
+
persistent=False,
|
202 |
+
)
|
203 |
+
|
204 |
+
def forward(self, hidden_states):
|
205 |
+
return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon)
|
206 |
+
|
207 |
+
|
208 |
+
class Attention(nn.Module):
|
209 |
+
"""Multi-head attention module."""
|
210 |
+
|
211 |
+
def __init__(self, config: gLM2Config):
|
212 |
+
super().__init__()
|
213 |
+
self.n_heads = config.heads
|
214 |
+
self.head_dim = config.dim // config.heads
|
215 |
+
|
216 |
+
self.wqkv = nn.Linear(config.dim, self.n_heads *
|
217 |
+
self.head_dim * 3, bias=False)
|
218 |
+
self.wo = nn.Linear(config.heads * self.head_dim,
|
219 |
+
config.dim, bias=False)
|
220 |
+
|
221 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
222 |
+
|
223 |
+
def forward(
|
224 |
+
self,
|
225 |
+
x: torch.Tensor,
|
226 |
+
attention_mask: Optional[torch.Tensor] = None,
|
227 |
+
) -> torch.Tensor:
|
228 |
+
bsz, seqlen, h_size = x.shape
|
229 |
+
qkv = self.wqkv(x)
|
230 |
+
|
231 |
+
qkv = qkv.view(bsz, seqlen, 3, self.n_heads, self.head_dim)
|
232 |
+
qkv = self.rotary_emb(qkv)
|
233 |
+
|
234 |
+
# (batch, nheads, 3, seqlen, headdim)
|
235 |
+
qkv = torch.transpose(qkv, 3, 1)
|
236 |
+
q = qkv[:, :, 0]
|
237 |
+
k = qkv[:, :, 1]
|
238 |
+
v = qkv[:, :, 2]
|
239 |
+
if attention_mask is not None:
|
240 |
+
attention_mask = attention_mask[:, None, None, :]
|
241 |
+
attention_mask = attention_mask.expand(
|
242 |
+
bsz, self.n_heads, seqlen, seqlen
|
243 |
+
).bool()
|
244 |
+
# [B, heads, seq, D]
|
245 |
+
output = torch.nn.functional.scaled_dot_product_attention(
|
246 |
+
q, k, v, attn_mask=attention_mask
|
247 |
+
)
|
248 |
+
output = output.permute(0, 2, 1, 3).contiguous()
|
249 |
+
|
250 |
+
output = output.view(bsz, seqlen, h_size)
|
251 |
+
return self.wo(output)
|
252 |
+
|
253 |
+
|
254 |
+
class FeedForward(nn.Module):
|
255 |
+
def __init__(
|
256 |
+
self,
|
257 |
+
dim: int,
|
258 |
+
hidden_dim: int,
|
259 |
+
multiple_of: int,
|
260 |
+
ffn_dim_multiplier: Optional[float],
|
261 |
+
):
|
262 |
+
"""
|
263 |
+
SwiGLU FeedForward module.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
dim (int): Input dimension.
|
267 |
+
hidden_dim (int): Hidden dimension of the feedforward layer.
|
268 |
+
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
269 |
+
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
|
270 |
+
"""
|
271 |
+
super().__init__()
|
272 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
273 |
+
# custom dim factor multiplier
|
274 |
+
if ffn_dim_multiplier is not None:
|
275 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
276 |
+
hidden_dim = multiple_of * \
|
277 |
+
((hidden_dim + multiple_of - 1) // multiple_of)
|
278 |
+
|
279 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
280 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
281 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
282 |
+
|
283 |
+
def forward(self, x):
|
284 |
+
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
|
285 |
+
|
286 |
+
|
287 |
+
class TransformerBlock(nn.Module):
|
288 |
+
def __init__(self, config: gLM2Config):
|
289 |
+
super().__init__()
|
290 |
+
self.n_heads = config.heads
|
291 |
+
self.dim = config.dim
|
292 |
+
self.head_dim = config.dim // config.heads
|
293 |
+
self.attention = Attention(config)
|
294 |
+
self.feed_forward = FeedForward(
|
295 |
+
dim=config.dim,
|
296 |
+
hidden_dim=4 * config.dim,
|
297 |
+
multiple_of=config.swiglu_multiple_of,
|
298 |
+
ffn_dim_multiplier=config.ffn_dim_multiplier,
|
299 |
+
)
|
300 |
+
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
301 |
+
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
302 |
+
|
303 |
+
def forward(
|
304 |
+
self,
|
305 |
+
x: torch.Tensor,
|
306 |
+
attention_mask: Optional[torch.Tensor] = None,
|
307 |
+
) -> torch.Tensor:
|
308 |
+
r = self.attention(self.attention_norm(
|
309 |
+
x), attention_mask=attention_mask)
|
310 |
+
h = x + r
|
311 |
+
r = self.feed_forward(self.ffn_norm(h))
|
312 |
+
out = h + r
|
313 |
+
return out
|
314 |
+
|
315 |
+
|
316 |
+
class TransformerLayers(nn.Module):
|
317 |
+
def __init__(self, config: gLM2Config):
|
318 |
+
super().__init__()
|
319 |
+
self.config = config
|
320 |
+
self.layers = torch.nn.ModuleList(
|
321 |
+
[TransformerBlock(config=config) for _ in range(config.depth)]
|
322 |
+
)
|
323 |
+
|
324 |
+
def forward(
|
325 |
+
self,
|
326 |
+
x: torch.FloatTensor,
|
327 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
328 |
+
return_all_hiddens: bool = False,
|
329 |
+
):
|
330 |
+
if x.shape[-1] != self.config.dim:
|
331 |
+
raise ValueError(
|
332 |
+
f"Input feature dim should be {self.config.dim}, but input has shape {x.shape}"
|
333 |
+
)
|
334 |
+
hiddens = []
|
335 |
+
for layer in self.layers:
|
336 |
+
x = layer(x, attention_mask=attention_mask)
|
337 |
+
if return_all_hiddens:
|
338 |
+
hiddens.append(x)
|
339 |
+
|
340 |
+
if return_all_hiddens:
|
341 |
+
return x, hiddens
|
342 |
+
return x
|
343 |
+
|
344 |
+
|
345 |
+
class gLM2PreTrainedModel(PreTrainedModel):
|
346 |
+
"""
|
347 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
348 |
+
models.
|
349 |
+
"""
|
350 |
+
config_class = gLM2Config
|
351 |
+
base_model_prefix = "glm2"
|
352 |
+
supports_gradient_checkpointing = False
|
353 |
+
|
354 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
355 |
+
def _init_weights(module, initializer_range=0.02):
|
356 |
+
if isinstance(module, nn.Linear):
|
357 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
358 |
+
if module.bias is not None:
|
359 |
+
nn.init.zeros_(module.bias)
|
360 |
+
elif isinstance(module, nn.Embedding):
|
361 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
362 |
+
if module.padding_idx is not None:
|
363 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
364 |
+
|
365 |
+
|
366 |
+
class gLM2Model(gLM2PreTrainedModel):
|
367 |
+
"""gLM2 Model."""
|
368 |
+
|
369 |
+
def __init__(self, config: gLM2Config):
|
370 |
+
super().__init__(config)
|
371 |
+
self.config = config
|
372 |
+
|
373 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
374 |
+
self.encoder = TransformerLayers(config)
|
375 |
+
# Initialize weights and apply final processing
|
376 |
+
self.post_init()
|
377 |
+
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
input_ids: torch.Tensor,
|
381 |
+
attention_mask: Optional[torch.Tensor] = None,
|
382 |
+
output_hidden_states: Optional[bool] = None,
|
383 |
+
return_dict: Optional[bool] = None,
|
384 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
385 |
+
output_hidden_states = (
|
386 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
387 |
+
)
|
388 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
389 |
+
|
390 |
+
h = self.tok_embeddings(input_ids)
|
391 |
+
if output_hidden_states:
|
392 |
+
sequence_output, all_hidden_states = self.encoder(
|
393 |
+
h, attention_mask, return_all_hiddens=True)
|
394 |
+
else:
|
395 |
+
sequence_output = self.encoder(h, attention_mask)
|
396 |
+
all_hidden_states = None
|
397 |
+
|
398 |
+
if not return_dict:
|
399 |
+
return (sequence_output, all_hidden_states)
|
400 |
+
|
401 |
+
return BaseModelOutput(
|
402 |
+
last_hidden_state=sequence_output,
|
403 |
+
hidden_states=all_hidden_states,
|
404 |
+
|
405 |
+
)
|
406 |
+
|
407 |
+
|
408 |
+
class gLM2ForMaskedLM(gLM2PreTrainedModel):
|
409 |
+
|
410 |
+
def __init__(self, config: gLM2Config):
|
411 |
+
super().__init__(config)
|
412 |
+
|
413 |
+
self.glm2 = gLM2Model(config)
|
414 |
+
self.lm_head = gLM2LMHead(config)
|
415 |
+
self.init_weights()
|
416 |
+
|
417 |
+
def forward(
|
418 |
+
self,
|
419 |
+
input_ids: torch.Tensor,
|
420 |
+
attention_mask: Optional[torch.Tensor] = None,
|
421 |
+
labels: Optional[torch.LongTensor] = None,
|
422 |
+
output_hidden_states: Optional[bool] = None,
|
423 |
+
return_dict: Optional[bool] = None,
|
424 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
425 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
426 |
+
|
427 |
+
outputs = self.glm2(
|
428 |
+
input_ids,
|
429 |
+
attention_mask=attention_mask,
|
430 |
+
output_hidden_states=output_hidden_states,
|
431 |
+
return_dict=return_dict,
|
432 |
+
)
|
433 |
+
sequence_output = outputs[0]
|
434 |
+
prediction_scores = self.lm_head(sequence_output)
|
435 |
+
|
436 |
+
masked_lm_loss = None
|
437 |
+
if labels is not None:
|
438 |
+
loss_fct = CrossEntropyLoss()
|
439 |
+
|
440 |
+
labels = labels.to(prediction_scores.device)
|
441 |
+
masked_lm_loss = loss_fct(
|
442 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
443 |
+
|
444 |
+
if not return_dict:
|
445 |
+
output = (prediction_scores,) + outputs[2:]
|
446 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
447 |
+
|
448 |
+
return MaskedLMOutput(
|
449 |
+
loss=masked_lm_loss,
|
450 |
+
logits=prediction_scores,
|
451 |
+
hidden_states=outputs.hidden_states,
|
452 |
+
attentions=outputs.attentions,
|
453 |
+
)
|
454 |
+
|
455 |
+
|
456 |
+
class gLM2LMHead(nn.Module):
|
457 |
+
"""gLM2 head for masked language modeling."""
|
458 |
+
|
459 |
+
def __init__(self, config):
|
460 |
+
super().__init__()
|
461 |
+
|
462 |
+
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
463 |
+
self.proj_output = nn.Linear(
|
464 |
+
config.dim, config.vocab_size, bias=False)
|
465 |
+
|
466 |
+
def forward(self, features):
|
467 |
+
return self.proj_output(self.norm(features))
|