alea-institute commited on
Commit
2f53ca1
·
verified ·
1 Parent(s): 29888da

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: ['kl3m', 'kl3m-003', 'alea', 'legal', 'financial']
4
+ date: 2023-12-28
5
+ ---
6
+
7
+ # kl3m-001-32k tokenizer
8
+
9
+ The `kl3m-001-32k` tokenizer is a domain-specific tokenizer trained on ~500B of financial and legal text from primarily-English sources.
10
+
11
+ This tokenizer was used for the first generation of KL3M embedding and generative models, including
12
+ `kl3m-170M`, `kl3m-1.7B`, `kl3m-embedding-001`, and `kl3m-embedding-002`.
13
+
14
+ ## Model Details
15
+
16
+
17
+ ### Summary
18
+
19
+ - **Vocabulary**: 32,768
20
+ - **Tokenizer type:** BPE
21
+ - **Special token support:** Both causal and masked language modeling
22
+ - **Language(s) (NLP):** English
23
+ - **Developed by:** Originally by [273 Ventures LLC](https://273ventures.com), donated to [ALEA Institute](https://aleainstitute.ai).
24
+ - **License:** [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/)
25
+
26
+
27
+ ### Model Description
28
+
29
+ The `kl3m-001-32k` tokenizer is a domain-specific tokenizer trained on ~500B of financial and legal text from primarily-English sources.
30
+
31
+ This tokenizer is notable for a number of reasons:
32
+
33
+ #### Domain Specific
34
+
35
+ As part of our research on more efficient SLM training for the legal and financial domain, we
36
+ trained a domain-specific tokenizer on a large corpus of financial and legal text. This tokenizer
37
+ has not, for example, seen any common general pretrain sources like Wikipedia or Common Crawl.
38
+
39
+ #### Large Added Token Set
40
+
41
+ As part of our research on efficient and reliable extraction and generation, we inserted
42
+ a large numer of deterministic "whole" tokens into the tokenizer, such as HTML tags
43
+ like `<span`, common Markdown elements like `#` and `##`, and legal enumerations like `(a)`.
44
+
45
+ See the `get_custom_tokens` method in `kl3m_embeddings/training/kl3m_001/train_tokenizer.py` for
46
+ more details:
47
+
48
+ ```python
49
+ def get_custom_tokens(
50
+ include_whitespace: bool = True,
51
+ include_markdown: bool = True,
52
+ include_html: bool = True,
53
+ include_json: bool = True,
54
+ include_xml: bool = True,
55
+ include_years: bool = True,
56
+ include_citations: bool = True,
57
+ lowercase: bool = False,
58
+ ) -> list[str]:
59
+ ```
60
+
61
+ #### Space Preservation
62
+
63
+ Unlike many tokenizers, we retain the space character as a token after early small-scale experiments.
64
+ While this has substantial space implications for some types of text with many shorter words, we found
65
+ that it reduced the rate of a number of undesirable phenomena.
66
+
67
+ #### Special Tokens for both Embedding and Generative Models
68
+
69
+ For both training and inference efficiency, we intended this tokenizer vocabulary to be
70
+ usable for both embedding and generative models. As such, we included special tokens
71
+ suitable for both causal and masked language modeling tasks.
72
+
73
+ * `<|start|>`: `0`
74
+ * `<|end|>`: `1`
75
+ * `<|pad|>`: `2`
76
+ * `<|unk|>`: `3`
77
+ * `<|sep|>`: `4`
78
+ * `<|cls|>`: `5`
79
+ * `<|mask|>`: `6`
80
+
81
+ ### Replication
82
+
83
+ The entire data collection and preprocesing pipeline is being made available, along with
84
+ training data, as part of the [ALEA Institute](https://aleainstitute.ai) [KL3M project](https://aleainstitute.ai/work/kl3m/).
85
+
86
+ The source code to used to train the tokenizer is available on GitHub at:
87
+ [https://github.com/alea-institute/kl3m-embedding-research](https://github.com/alea-institute/kl3m-embedding-research)
88
+
89
+ The data pipeline will be available on GitHub and S3 in the near future.
90
+
91
+ ## Uses
92
+
93
+ This tokenizer is intended to be used for English language text in professional contexts such as legal and financial documents.
94
+
95
+ ### Recommendations
96
+
97
+ Please see the `kl3m-003-64k` tokenizer for the next iteration of our research on domain-specific tokenization.
98
+
99
+ In general, the `kl3m-003-64k` tokenizer is recommended over the original `kl3m-001-32k` tokenizer.
100
+
101
+ ```text
102
+ Original text: The Comptroller of the Currency shall have the same authority with respect to functions transferred to
103
+ the Comptroller of the Currency under the Enhancing Financial Institution Safety and Soundness Act of 2010 as was
104
+ vested in the Director of the Office of Thrift Supervision on the transfer date, as defined in section 311 of that
105
+ Act [12 U.S.C. 5411].
106
+
107
+ kl3m-001-32k
108
+ --------------------
109
+ Size: 147
110
+ Tokens: ['The', ' ', 'Comp', 'troller', ' ', 'of', ' ', 'the', ' ', 'C', 'urrency', ' ', 'shall', ' ', 'have', ' ', 'the', ' ', 'same', ' ', 'authority', ' ', 'with', ' ', 'respect', ' ', 'to', ' ', 'fun', 'ctions', ' ', 'transferred', ' ', 'to', '\n', ' ', 'the', ' ', 'Comp', 'troller', ' ', 'of', ' ', 'the', ' ', 'C', 'urrency', ' ', 'under', ' ', 'the', ' ', 'En', 'ha', 'ncing', ' ', 'Financial', ' ', 'Institution', ' ', 'Sa', 'fe', 'ty', ' ', 'a', 'n', 'd', ' ', 'S', 'ound', 'ness', ' ', 'Act', ' ', 'of', ' ', '2010', ' ', 'as', ' ', 'was', '\n', ' ', 'vested', ' ', 'i', 'n', ' ', 'the', ' ', 'Director', ' ', 'of', ' ', 'the', ' ', 'Office', ' ', 'of', ' ', 'Th', 'rift', ' ', 'Superv', 'ision', ' ', 'o', 'n', ' ', 'the', ' ', 'transfer', ' ', 'date', ',', ' ', 'as', ' ', 'defined', ' ', 'i', 'n', ' ', 'section', ' ', '311', ' ', 'of', ' ', 'that', '\n', ' ', 'Act', ' ', '[', '12', ' ', 'U', '.', 'S', '.', 'C', '.', ' ', '54', '11', '].']
111
+ IDs: [815, 31673, 3546, 14529, 31673, 269, 31673, 441, 31673, 41, 9646, 31673, 5516, 31673, 4130, 31673, 441, 31673, 8685, 31673, 14765, 31673, 1946, 31673, 12500, 31673, 265, 31673, 12122, 1935, 31673, 12677, 31673, 265, 31674, 31673, 441, 31673, 3546, 14529, 31673, 269, 31673, 441, 31673, 41, 9646, 31673, 2823, 31673, 441, 31673, 1871, 288, 2655, 31673, 20796, 31673, 29543, 31673, 4778, 362, 1004, 31673, 71, 84, 74, 31673, 57, 1098, 1647, 31673, 8494, 31673, 269, 31673, 3629, 31673, 310, 31673, 3182, 31674, 31673, 9761, 31673, 79, 84, 31673, 441, 31673, 21209, 31673, 269, 31673, 441, 31673, 8827, 31673, 269, 31673, 788, 11004, 31673, 28799, 873, 31673, 85, 84, 31673, 441, 31673, 12790, 31673, 2726, 18, 31673, 310, 31673, 10212, 31673, 79, 84, 31673, 3517, 31673, 15340, 31673, 269, 31673, 1704, 31674, 31673, 8494, 31673, 65, 534, 31673, 59, 20, 57, 20, 41, 20, 31673, 2195, 572, 5582]
112
+
113
+ kl3m-003-64k
114
+ --------------------
115
+ Size: 70
116
+ Tokens: ['The', 'ĠComptroller', 'Ġof', 'Ġthe', 'ĠCurrency', 'Ġshall', 'Ġhave', 'Ġthe', 'Ġsame', 'Ġauthority', 'Ġwith', 'Ġrespect', 'Ġto', 'Ġfunctions', 'Ġtransferred', 'Ġto', 'Ċ', 'Ġthe', 'ĠComptroller', 'Ġof', 'Ġthe', 'ĠCurrency', 'Ġunder', 'Ġthe', 'ĠEnh', 'ancing', 'ĠFinancial', 'ĠInstitution', 'ĠSafety', 'Ġand', 'Ġ', 'Sound', 'ness', 'ĠAct', 'Ġof', 'Ġ2010', 'Ġas', 'Ġwas', 'Ċ', 'Ġvested', 'Ġin', 'Ġthe', 'ĠDirector', 'Ġof', 'Ġthe', 'ĠOffice', 'Ġof', 'ĠThrift', 'ĠSupervision', 'Ġon', 'Ġthe', 'Ġtransfer', 'Ġdate', ',', 'Ġas', 'Ġdefined', 'Ġin', 'Ġsection', 'Ġ311', 'Ġof', 'Ġthat', 'Ċ', 'ĠAct', 'Ġ[', '12', 'Ġ', 'U.S.C.', 'Ġ54', '11', '].']
117
+ IDs: [671, 13273, 295, 281, 25922, 735, 704, 281, 1913, 2451, 440, 1894, 312, 5860, 7264, 312, 211, 281, 13273, 295, 281, 25922, 621, 281, 18926, 4406, 3195, 24448, 5617, 310, 233, 63589, 2130, 854, 295, 1611, 398, 725, 211, 11978, 300, 281, 2827, 295, 281, 1767, 295, 44029, 37141, 395, 281, 3696, 1548, 24, 398, 3011, 300, 782, 6590, 295, 407, 211, 854, 1327, 524, 233, 63761, 3789, 547, 8578]
118
+
119
+ ```
120
+
121
+ ## How to Get Started with the Model
122
+
123
+ Use the code below to get started with the model.
124
+
125
+ ```
126
+ from tokenizers import Tokenizer
127
+
128
+ tokenizer = Tokenizer.from_pretrained('alea-institute/kl3m-001-32k')
129
+ ```
130
+
131
+ ## Citation
132
+
133
+ Tokenizer and dataset publications are pending.
134
+
135
+ ## Contact
136
+
137
+ For any questions, please contact [ALEA Institute](https://aleainstitute.ai) at [hello@aleainstitute.ai](mailto:hello@aleainstitute.ai) or
138
+ create an issue on this repository or [GitHub](https://github.com/alea-institute/kl3m-embedding-research).