ppo-LunarLander-v2 / config.json
albisumikel's picture
Upload PPO LunarLander-v2 trained agent
171f41a verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78c505eb12d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c505eb1360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c505eb13f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c505eb1480>", "_build": "<function ActorCriticPolicy._build at 0x78c505eb1510>", "forward": "<function ActorCriticPolicy.forward at 0x78c505eb15a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78c505eb1630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c505eb16c0>", "_predict": "<function ActorCriticPolicy._predict at 0x78c505eb1750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c505eb17e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c505eb1870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78c505eb1900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c50fec8280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716445994526648931, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBlsb3HtbY/utESvyo8+L10ZUO9nctwvgAAAAAAAAAAANI+vSRKxj44nlO9glKrvruAXroRYgw8AAAAAAAAAABAexg+j6ibP2VfFz8ZMNO+8PZUPnZr0z4AAAAAAAAAAKABWL7oQhM/kgyHvc8jub65m3q9pp2IPAAAAAAAAAAAAMPVPDULOD+Ddni98XSjvlPzNzw1TFO8AAAAAAAAAAAzbN08SMyRP1juqD2uJtC+/SlxPXVHljwAAAAAAAAAADNeCz1KDCo+tmLyu/qQWb5WPj09D2qMPAAAAAAAAAAATt+yvgtgKT9A2za+qj+9vs+uGr6caL08AAAAAAAAAABW2KC+FAmwvIpNtzr6RvU4atz1PSMq1bkAAIA/AACAP5rKFT30QK8/9dUVPzchwL7YUiy88pSOPQAAAAAAAAAABn4UvhbUtz9W7CC/BKFrvhX+GL5bgGu+AAAAAAAAAABmzYi9uB7LNnvOV7VOIKSwGySOO611hDQAAAAAAAAAAM0ZqrymEKA/nZCxvVNbAr8rto+8Slu1PAAAAAAAAAAAQH2+PXtU8brquJu71ra5PDb/nTueJJ+9AACAPwAAgD+AVC2++k9+Pwn8hr7DtwC/VBv5vVHnhj0AAAAAAAAAAKDtHj4rKb4/rBkgP8TjGb7HWRE+pliXPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDPH0TURWeMAWyUS/aMAXSUR0CULLB5ooNNdX2UKGgGR0BxDNR/EwWWaAdNCwFoCEdAlC0xFVktmXV9lChoBkdAW9wqUeMho2gHTegDaAhHQJQtvHCGetl1fZQoaAZHQHAYqgVXV9ZoB0v+aAhHQJQt3J+2E011fZQoaAZHQHERUleF+NNoB00LAWgIR0CULokAggX/dX2UKGgGR0Bp5g82aUiZaAdNFQFoCEdAlC7SE6DGtXV9lChoBkdAb9cscyWRimgHS+5oCEdAlDN+FHrhSHV9lChoBkdAb2GDZDiOvWgHTRwBaAhHQJQ0X/Nqxkd1fZQoaAZHQGxBPrOZ9eBoB00PAWgIR0CUNGfHPu5SdX2UKGgGR0BtTXgNwzciaAdL82gIR0CUNPZh8YygdX2UKGgGR0BwGsp1A7gbaAdL9GgIR0CUNsinHeabdX2UKGgGR0BvTy3solUqaAdNAgFoCEdAlDbipFTef3V9lChoBkdAblw371qWT2gHTWABaAhHQJQ3B0Qsf7t1fZQoaAZHQHD+B1oxpL5oB00sAWgIR0CUN8/M4cWCdX2UKGgGR0BwFk65oXbeaAdNDgFoCEdAlDhwGnn+ynV9lChoBkdAa2PfJmuklGgHTRMBaAhHQJQ4vXXiBGx1fZQoaAZHQG9cJswco6VoB00LAWgIR0CUOT2SMcZMdX2UKGgGR0BvKYUUO/cnaAdL8GgIR0CUPdlFMIu5dX2UKGgGR0Be6b3bmEGraAdN6ANoCEdAlD43r6ciGHV9lChoBkdAXvQhQm/nGWgHTegDaAhHQJQ/D1PFefJ1fZQoaAZHQG20jVH4GlhoB00BAWgIR0CUP5btJFspdX2UKGgGR0BxVWtOmBOIaAdNCgFoCEdAlECdALRa5nV9lChoBkdAP3OFtbcGkmgHS79oCEdAlEG3AymALHV9lChoBkdAbvqa1kUbk2gHTc8BaAhHQJRCbQOWjXZ1fZQoaAZHQHDTrEDQqqhoB0v5aAhHQJRDZ1klNUR1fZQoaAZHQG8f6rvLHMloB00pAWgIR0CUQ+FFDv3KdX2UKGgGR0BvgkvEjxCqaAdNAwFoCEdAlEQgqqfe13V9lChoBkdAb0ozNUwSJ2gHTV8BaAhHQJRGIk6cRUZ1fZQoaAZHQGF4L5AQg9xoB03oA2gIR0CURtOHFglXdX2UKGgGR0BwhqaKDTScaAdL+mgIR0CUSX0DEFW5dX2UKGgGR0BuPJtgrpaBaAdL+mgIR0CUSw3ueBhAdX2UKGgGR0Bx80ZOzposaAdN8gFoCEdAlEs7AYYR/XV9lChoBkdAcUFsU7CBPWgHTREBaAhHQJRLWXRgJC11fZQoaAZHQHAidLDhtLtoB0v8aAhHQJRLyDCgsbx1fZQoaAZHQG098aOxSpBoB00EAWgIR0CUT/pkf9xZdX2UKGgGR0BtVk580DU3aAdN+AFoCEdAlFArPUrkKnV9lChoBkdAcQVwe/5+IGgHTRcBaAhHQJRQPoq0+kh1fZQoaAZHQG1l6KLsKLNoB0vzaAhHQJRQ9ERaouR1fZQoaAZHQHFnCm2sq8VoB0vmaAhHQJRTaMR6F/R1fZQoaAZHQG3JajnFHaxoB00uAWgIR0CUVKfyf+S9dX2UKGgGR0BxgDzK9wm3aAdNDgFoCEdAlFYcQVbiZXV9lChoBkdAbQpFyaNMoWgHS/9oCEdAlGwDdgv12HV9lChoBkdAcE3oxpL26GgHTY8BaAhHQJRsp1X/5tZ1fZQoaAZHQHDAfUSZjQRoB0v/aAhHQJRtMSM98qp1fZQoaAZHQHHm9MGorFxoB0v/aAhHQJRtR4GD+R51fZQoaAZHQG/A1Sn+AEtoB00IAWgIR0CUbWyXD3uedX2UKGgGR0Alr6hxo7FLaAdLsmgIR0CUbfEwWWQfdX2UKGgGR0BckZNwiqyXaAdN6ANoCEdAlG6kbgjyF3V9lChoBkdAb9dY5ksjFGgHS+VoCEdAlG8yAMDwIHV9lChoBkdAcTbQ1rIo3WgHS/BoCEdAlG+1JL/S6XV9lChoBkdAcGMx6OYIB2gHTQUBaAhHQJRwh9F4LTh1fZQoaAZHQGwH8dxQzk9oB0vpaAhHQJRxlHy3CsR1fZQoaAZHQHCtTmGM4tJoB0vmaAhHQJRzjQOWjXZ1fZQoaAZHQHDsGjoIOYpoB0vnaAhHQJR0z1oQFs51fZQoaAZHQEFLR/mT1TRoB0vgaAhHQJR1rLOiWVx1fZQoaAZHQG9WsBZIQOFoB00BAWgIR0CUdoUo8ZDRdX2UKGgGR0A3MQgLZzxPaAdLwWgIR0CUdqWcz67/dX2UKGgGR0BwqHgjyFwlaAdL3mgIR0CUdzPGyX2NdX2UKGgGR0Bxmyr1dxACaAdNBgFoCEdAlHd+AZsKs3V9lChoBkdAal7c9nscAGgHTQIBaAhHQJR35KkEcKh1fZQoaAZHQFoyjGDL8rJoB03oA2gIR0CUeL+g13t8dX2UKGgGR0Bvxjidat9yaAdL7GgIR0CUeOTB68g7dX2UKGgGR0BxYaDGtITXaAdL6GgIR0CUepxCY1HfdX2UKGgGR0BBWHxSYPXkaAdLlGgIR0CUfCnVoYeldX2UKGgGR0BwSmcLBsQ/aAdN7AFoCEdAlHyAOz6acHV9lChoBkdAblGF36hxpGgHS+xoCEdAlHzURFqi5HV9lChoBkdAbt6F8G9pRGgHS+1oCEdAlH655Rjz7XV9lChoBkdAbygxdpqREGgHTZcDaAhHQJR/A8PnSv11fZQoaAZHQG0xRxT850doB013AWgIR0CUgBN6gM+edX2UKGgGR0BwqO25QP7OaAdNEQFoCEdAlIHEBwMpgHV9lChoBkdAciblLeyiVWgHS+doCEdAlIHfQBxPwnV9lChoBkdAbpG+cH4XXWgHTQcBaAhHQJSCcVJtix51fZQoaAZHQHJBhE0BOpNoB0v5aAhHQJSDWTLW7OF1fZQoaAZHQHD0WB4D9wZoB0vlaAhHQJSDpfdAPd51fZQoaAZHQHBwhf8dgfFoB00SAWgIR0CUhc96C17ZdX2UKGgGR0BwYUp6QeV+aAdL42gIR0CUhgjqfOD8dX2UKGgGR0BvoMIkZ75VaAdL4mgIR0CUiQJkoWpIdX2UKGgGR0Bwj/foA4n4aAdL62gIR0CUiRWOZLIxdX2UKGgGR0BtP6vq1PWQaAdL8mgIR0CUi+UNKAavdX2UKGgGR0BwqsBdUsFuaAdL5WgIR0CUjDLoOhCddX2UKGgGR0Bv+mwTufEoaAdNCAFoCEdAlIyczdk8R3V9lChoBkdAcSVQOWjXWmgHTUsBaAhHQJSNcvPC2tx1fZQoaAZHQHEwTHwPRRdoB0vkaAhHQJSNnuTibUh1fZQoaAZHQHFXtsBQvYhoB0vfaAhHQJSN283++/R1fZQoaAZHQFlFLJ0W/JxoB03oA2gIR0CUjsZntfG/dX2UKGgGR0Bw6sgIQe3haAdNCgFoCEdAlI8J1/2Cd3V9lChoBkdAbhvPuXu3MWgHTRkBaAhHQJSQ7B42S+x1fZQoaAZHQHAevacqe9VoB00GAWgIR0CUkfstTUAldX2UKGgGR0BvQqw2VE/jaAdL4WgIR0CUkrJL/S6UdX2UKGgGR0Bw4Pk1dgOSaAdNCQFoCEdAlJRcY/FBIHV9lChoBkdAbrEbqhUR4GgHTX4BaAhHQJSUxagVXV91fZQoaAZHQG8GOqNp/PRoB0vjaAhHQJSVQaGYa5x1fZQoaAZHQHCIu18b70poB0v5aAhHQJSV4yYXwb51fZQoaAZHQG+B7I1cdHVoB0vfaAhHQJSWQZzgdfd1fZQoaAZHQHAaP7rLQoloB0vsaAhHQJSXJMtbs4V1fZQoaAZHQDP9ucc2itdoB0vXaAhHQJSXNuO0b991fZQoaAZHQHCtOpfhMrVoB00KAWgIR0CUlzDxsl9jdX2UKGgGR0Bs7o7xNIsiaAdL9GgIR0CUlzqZ+hGpdX2UKGgGR0Bst5lrdnCgaAdNzgJoCEdAlJd8iKR+0HV9lChoBkdAMIDuKGcnV2gHS6xoCEdAlJervgFX73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}