{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e205117f640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e205117f6d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e205117f760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e205117f7f0>", "_build": "<function ActorCriticPolicy._build at 0x7e205117f880>", "forward": "<function ActorCriticPolicy.forward at 0x7e205117f910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e205117f9a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e205117fa30>", "_predict": "<function ActorCriticPolicy._predict at 0x7e205117fac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e205117fb50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e205117fbe0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e205117fc70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e2051132780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727788335236098308, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOEb712IL0/Q6i5vtVtFz2RZ7a9DNCkvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+Rv0yxiXqMAWyUTRkBjAF0lEdAm3dVclgMMXV9lChoBkdAcU9eJ53Tu2gHS/poCEdAm3iuWrwOOXV9lChoBkdAcLFxeb/ff2gHTQMBaAhHQJt7Xnr6ciJ1fZQoaAZHQHBbd1IRRMxoB0vvaAhHQJt8rDIikft1fZQoaAZHQE/i6mwaBI5oB0veaAhHQJt938TBZZB1fZQoaAZHQHAIRhYvFm5oB00sAWgIR0Cbf4sfq5bydX2UKGgGR0BxRewgTyrgaAdL6GgIR0CbghEL6UJOdX2UKGgGR0Bwq4N0/4ZdaAdNCAFoCEdAm4QDLOiWV3V9lChoBkdAcZQXXyy2QWgHS/loCEdAm4WztLL6lHV9lChoBkdAcSYsImgJ1WgHTRIBaAhHQJuHowevIOp1fZQoaAZHQHFnE078vVVoB0v+aAhHQJuLOaKDTSd1fZQoaAZHQHH72T9sJppoB0v3aAhHQJuNLos7MgV1fZQoaAZHQG3nNdiUgSxoB00RAWgIR0Cbjqssg+yJdX2UKGgGR0BwteKYRdyDaAdNCwFoCEdAm5AeRT0g83V9lChoBkdARt0A/9pAU2gHS9FoCEdAm5J6sMiKSHV9lChoBkdAbR2I0qH45GgHS/loCEdAm5PilJpWWHV9lChoBkdAcOso9s7+1mgHS/toCEdAm5VK46Oo53V9lChoBkdAQajNyHVPN2gHS89oCEdAm5Zqb4Ju23V9lChoBkdATVvF72L5ymgHS3doCEdAm5cN7jT8YXV9lChoBkdAbuABikO7QWgHS+NoCEdAm5l+6Zpi7XV9lChoBkdAcNks5XEIgWgHS+1oCEdAm5rMKsuFpXV9lChoBkdAcjIXQtz0YmgHTRwBaAhHQJucWZ3LV4J1fZQoaAZHQHAbfgFX7tRoB00EAWgIR0CbndS/j81odX2UKGgGR0BylyhM8HObaAdNSQFoCEdAm6DbDAJswnV9lChoBkdAcMUwoLG7z2gHS/NoCEdAm6Ir+o99t3V9lChoBkdAcWSNbTtsvmgHTTABaAhHQJujyBBiTdN1fZQoaAZHQHBnc9wFTvRoB00iAWgIR0CbppKm8/UwdX2UKGgGR0BxPBUADJU6aAdL+2gIR0Cbp+tIClrNdX2UKGgGR0BtLJradtl7aAdNVQFoCEdAm6nKGHpKSXV9lChoBkdAcxiM+u/1x2gHTQsBaAhHQJurNvddmg91fZQoaAZHQHFKaLXL/0doB00eAWgIR0CbrfbEgntwdX2UKGgGR0BvC6iKziS8aAdL92gIR0Cbr0qO938odX2UKGgGR0BxCvWGyon8aAdNDAFoCEdAm7DB4MWoFXV9lChoBkdAcGceHSF492gHTRMBaAhHQJuySx6fJ3h1fZQoaAZHQHC/rf+CK79oB00PAWgIR0CbtR8YAKfGdX2UKGgGR0Bxy0S6DoQnaAdL7GgIR0Cbtug/keZHdX2UKGgGR0Byyg/B3zMBaAdL3WgIR0CbuGFTNt65dX2UKGgGR0BJmH/tIClraAdLvWgIR0Cbuaod+5OKdX2UKGgGR0Bw/kUIsyzpaAdNGQFoCEdAm71IMfA9FHV9lChoBkdAcdnY64lQdmgHS+1oCEdAm78WsA/9pHV9lChoBkdAS/PZ9NN8E2gHS+RoCEdAm8CKcmShanV9lChoBkdAb/rwLmZE2GgHTTgBaAhHQJvCSLP2PDJ1fZQoaAZHQHNdoESuhbpoB00JAWgIR0CbxNqMm4RVdX2UKGgGR0BcuqGUOd5IaAdN6ANoCEdAm8uxKL8763V9lChoBkdAb2hnyup0fmgHTQUBaAhHQJvNMy8BdUt1fZQoaAZHQGz9ye7L+xZoB0v8aAhHQJvOnGbTc7B1fZQoaAZHQHFo07Sy+pRoB02QAWgIR0Cb0gAqNIbwdX2UKGgGR0BxUteeFtbcaAdNDgFoCEdAm9ONnkDIR3V9lChoBkdAcdfWZJCjUWgHTRcBaAhHQJvVFlQMx491fZQoaAZHQHBpDzmOlwdoB00bAWgIR0Cb1qmDUVi4dX2UKGgGR0BxaxUbT+efaAdNBQFoCEdAm9lAi/wiJXV9lChoBkdAcKFi5NGmUGgHTRwBaAhHQJva2tvGZNR1fZQoaAZHQHE3XUlRgqpoB005AWgIR0Cb3JCIDYAbdX2UKGgGR0BxDnluFYdRaAdNJQFoCEdAm94p9ZzPr3V9lChoBkdAcAERXfZVXGgHTQUBaAhHQJvgvdBSk0t1fZQoaAZHQG3penqFAVxoB00YAmgIR0Cb482Jiy6ddX2UKGgGR0BxrABRyfcvaAdNCgFoCEdAm+ZoKtxMnXV9lChoBkdAbjjpItlI3GgHS/hoCEdAm+fRvegte3V9lChoBkdAcwrIY3vQW2gHTQcBaAhHQJvpucDr7fp1fZQoaAZHQHF2ePzWf9RoB00mAWgIR0Cb67Q9ic5KdX2UKGgGR0BwFseGO+7EaAdNDgFoCEdAm+9m69TP0XV9lChoBkdAcdnJpFkQPWgHTQ0BaAhHQJvxO+K0lZ51fZQoaAZHQGuJ1dX1antoB00IAWgIR0Cb8qVVPva2dX2UKGgGR0ByEeXw9aEBaAdL4WgIR0Cb8+D0Dlo2dX2UKGgGR0Bxkt64UeuFaAdNiQJoCEdAm/iawMYuTXV9lChoBkdAcDE6yjYZmGgHTRgBaAhHQJv6GUyHmA91fZQoaAZHQHBDF1SwW31oB0vxaAhHQJv7Zx+8Xep1fZQoaAZHQHAohikO7QNoB0v4aAhHQJv9/6fra/R1fZQoaAZHQHFO611GLDRoB00IAWgIR0Cb/4Aksz2wdX2UKGgGR0By6ldv863iaAdNdQFoCEdAnAGJ+lTFVHV9lChoBkdAcPhKOT7l72gHS/toCEdAnAQQF1SwW3V9lChoBkdAcMlgieNDMWgHTRsBaAhHQJwFo+dK/VR1fZQoaAZHQHFbvyLAHmloB0vzaAhHQJwG9M+NcW11fZQoaAZHQG0bAZ0jkdVoB00cAWgIR0CcCIvphWo4dX2UKGgGR0Bxbi/yoXKsaAdNDQFoCEdAnAs7y6MBIXV9lChoBkdAcmy2nKnvUmgHS/hoCEdAnAyn4bjtHHV9lChoBkdAcLL+PRzBAWgHTQMBaAhHQJwOEwGnn+11fZQoaAZHQGfhYaxX4j9oB01NA2gIR0CcE9QrtmcwdX2UKGgGR0BxNTKFIuoQaAdL8WgIR0CcFSZjx0+1dX2UKGgGR0BvZm5+YtxuaAdNDgFoCEdAnBadYjjaPHV9lChoBkdAcGm3HJcPfGgHTQ8BaAhHQJwZlmK64Dt1fZQoaAZHQHDA8jZ+QU5oB00cAWgIR0CcG44NI9TxdX2UKGgGR0BwTV2/zreJaAdNCwFoCEdAnB12L1mJ33V9lChoBkdAcOv/mT1TSGgHTQQBaAhHQJwfeby6MBJ1fZQoaAZHQHE97ExZdOZoB0vraAhHQJwiprgwXZZ1fZQoaAZHQHBPnbVSXMRoB00LAWgIR0CcJBIaLn9vdX2UKGgGR0ByG4EHMUypaAdL/GgIR0CcJXnQ6ZH/dX2UKGgGR0ByRnZ+QU5/aAdL/2gIR0CcJt7voePrdX2UKGgGR0Bv43vMKTjeaAdNOQFoCEdAnCnd1MdtEXV9lChoBkdASzgAuIyj6GgHS8loCEdAnCr0JBw++3V9lChoBkdAcGRiMHbAUWgHS/toCEdAnCxqRZEDyXV9lChoBkdAb+MnZTQ3P2gHTRoBaAhHQJwvGpZOi351fZQoaAZHQG6TsURFqi5oB00BAWgIR0CcMIPCEYfodX2UKGgGR0BwJa0IC2c8aAdNAgFoCEdAnDHz1kDp1XV9lChoBkdAcUTsOoYNzGgHS+1oCEdAnDM/YnOSn3V9lChoBkdAcRmxhlUZN2gHS/FoCEdAnDSODSPU8XV9lChoBkdAcKtqtYB/7WgHTQoBaAhHQJw3UwtapxZ1fZQoaAZHQHIClwLmZE5oB00JAWgIR0CcOMVjI7vHdX2UKGgGR0BwCC/FirksaAdNDgFoCEdAnDo+HJtBOnV9lChoBkdAQQ1gBtDUmWgHS/BoCEdAnDuHpbD/EXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoROPePubhn67AdqyesMQRP4QCMA2luY5SKEL0m9qyJRjKC5tn9+RYQFDF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |