ppo-LunarLander-v2 / config.json
albertqueralto's picture
First luner lander trained PPO agent
d4a7d80
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f177f5665e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f177f566670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f177f566700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f177f566790>", "_build": "<function ActorCriticPolicy._build at 0x7f177f566820>", "forward": "<function ActorCriticPolicy.forward at 0x7f177f5668b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f177f566940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f177f5669d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f177f566a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f177f566af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f177f566b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f177f5dce40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670517753471038244, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1x5L2ukZe66iFBObXMSjRuULS68mZeuAAAgD8AAAAARg98vqFZCL0QWni8Sfe5Ot2Vbj5Qa4u7AACAPwAAgD9asBM+rCi9Pnk0Kr5dVVS+jiqNvQx4NzsAAAAAAAAAAADU5DxIy5G6Kj5pOQ/sdjXyPOI69GKHuAAAgD8AAIA/AJD4vFZijT+uEWe9gt+5vnJR77xHH0O8AAAAAAAAAADGlEw+bsjcvM7aATyv/Y+6JiJFvr5wYLsAAIA/AACAP/Nngj30hag+DhIEvVc1hr5rmgy6rZrsuwAAAAAAAAAAZh5Jva6xobrc1oM6xgttNdCjtbp80Ze5AACAPwAAgD8AbIU8M4uQP7htmj3bvKC+tFUoPGoQMz0AAAAAAAAAAA01ur32FHy6HuSsNc10OjCi2cs6HvPhtAAAgD8AAIA/hjUxvgOSkj96JOe+IGChvqdjVL4a5CK+AAAAAAAAAADN0OI7/t79PZt56L2sCXu+hhg2vY+DuL0AAAAAAAAAAFM8Zb5EGPc+rc+DPQfUkr7lnoa9g3UlvQAAAAAAAAAAM6H+vF89pz9/qrG9xlGhvnfmbL0lTBe8AAAAAAAAAAAzcew8Bfjku4h9+LwAYXA96K30u+J8G7wAAIA/AACAPzN9zDyuTYG6fmmes2xq3y66f5g6qxa3MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFto5zQK/bUCUhpRSlIwBbJRNHAGMAXSUR0CUmykmhM8HdX2UKGgGaAloD0MIRQ2mYbhtckCUhpRSlGgVTUEBaBZHQJSce7z06HV1fZQoaAZoCWgPQwi7K7tgcIZcQJSGlFKUaBVN6ANoFkdAlJ2Ax8D0UXV9lChoBmgJaA9DCDum7sruuHJAlIaUUpRoFU1FAWgWR0CUnaT2FnIydX2UKGgGaAloD0MIaww6IbRKcECUhpRSlGgVTWIBaBZHQJSeWhUR3/x1fZQoaAZoCWgPQwhTsTGvY3JwQJSGlFKUaBVNLAFoFkdAlJ6RJZntfHV9lChoBmgJaA9DCD3zctj95W9AlIaUUpRoFU1IAWgWR0CUnpUqQRwqdX2UKGgGaAloD0MIGXPXEnLhbkCUhpRSlGgVTSMBaBZHQJSgT0RODap1fZQoaAZoCWgPQwizB1qBodJvQJSGlFKUaBVNEwFoFkdAlKDkl3QlbHV9lChoBmgJaA9DCHhEhermPG1AlIaUUpRoFU1CAWgWR0CUoT+s5n14dX2UKGgGaAloD0MIMzLIXQT8bkCUhpRSlGgVTScBaBZHQJSiZxm03Ox1fZQoaAZoCWgPQwg0vcRY5jxyQJSGlFKUaBVNQwFoFkdAlLcX4bjtHHV9lChoBmgJaA9DCMbAOo6fpG5AlIaUUpRoFU0mAWgWR0CUt7Uc4o7WdX2UKGgGaAloD0MI2o8UkaEkcUCUhpRSlGgVTS8BaBZHQJS4MIhQm/p1fZQoaAZoCWgPQwjdQIF38pFtQJSGlFKUaBVNXQFoFkdAlLnX6Eal13V9lChoBmgJaA9DCKyL22iAtm9AlIaUUpRoFU07AWgWR0CUuh1V5rxidX2UKGgGaAloD0MIFXKlngWNb0CUhpRSlGgVTR8BaBZHQJS6OMsH0K91fZQoaAZoCWgPQwh07KASl7dxQJSGlFKUaBVNKwFoFkdAlLuH0XgtOHV9lChoBmgJaA9DCJkOnZ53TW5AlIaUUpRoFU0zAWgWR0CUu9UQ04zadX2UKGgGaAloD0MIVfgzvBl+cECUhpRSlGgVTV8BaBZHQJS8R0MgEEF1fZQoaAZoCWgPQwg7OUNxh5NxQJSGlFKUaBVNMgFoFkdAlL5VhkRSP3V9lChoBmgJaA9DCCYBampZSXBAlIaUUpRoFU0tAWgWR0CUvo/bTMJQdX2UKGgGaAloD0MI5urHJnkxb0CUhpRSlGgVTTEBaBZHQJS/77MxGlR1fZQoaAZoCWgPQwg0LEZdq39wQJSGlFKUaBVNewFoFkdAlMBG29cry3V9lChoBmgJaA9DCAHeAgnKMHFAlIaUUpRoFU3NAWgWR0CUwO8jzI3jdX2UKGgGaAloD0MIsB9igwWCbUCUhpRSlGgVTR4BaBZHQJTBoESuhbp1fZQoaAZoCWgPQwiXcr7Ye0dyQJSGlFKUaBVNMwFoFkdAlMLTNyHVPXV9lChoBmgJaA9DCLKC34YYXHFAlIaUUpRoFU0XAWgWR0CUw3uctoSMdX2UKGgGaAloD0MI8rVnlsTOcECUhpRSlGgVTWQBaBZHQJTDfAoG6f91fZQoaAZoCWgPQwiGcMyyp4duQJSGlFKUaBVNHwFoFkdAlMP8/D+BH3V9lChoBmgJaA9DCK+xS1Rvq2VAlIaUUpRoFU3oA2gWR0CUxOi35N48dX2UKGgGaAloD0MIu5o8ZTXdcECUhpRSlGgVTRgBaBZHQJTFX58BuGd1fZQoaAZoCWgPQwjsavKUVWhvQJSGlFKUaBVNMAFoFkdAlMXbmuDBdnV9lChoBmgJaA9DCMlyEkrfW2JAlIaUUpRoFU3oA2gWR0CUxkjxkNF0dX2UKGgGaAloD0MIVdtN8M2UbkCUhpRSlGgVTUMBaBZHQJTHHundfsx1fZQoaAZoCWgPQwgy5xn7kiJuQJSGlFKUaBVNMwFoFkdAlMi8JhOQAHV9lChoBmgJaA9DCMITev3JEnBAlIaUUpRoFU1GAWgWR0CUyTFM7EHddX2UKGgGaAloD0MIEFzlCQRobECUhpRSlGgVTR4BaBZHQJTJW6lLvkR1fZQoaAZoCWgPQwgFa5xNBwRxQJSGlFKUaBVNFAFoFkdAlMn6ZhKDkHV9lChoBmgJaA9DCEzFxrwOAHBAlIaUUpRoFU06AWgWR0CUypkeZG8VdX2UKGgGaAloD0MIKuEJvX4xcUCUhpRSlGgVTR4BaBZHQJTK9xGUfPp1fZQoaAZoCWgPQwhfXKrSlvVwQJSGlFKUaBVNEgFoFkdAlMuj7yhBaHV9lChoBmgJaA9DCFTjpZvEtkBAlIaUUpRoFUvbaBZHQJTMQKiO/+N1fZQoaAZoCWgPQwg9fQT+MCFyQJSGlFKUaBVNNAFoFkdAlM0qFZgXuXV9lChoBmgJaA9DCBUaiGUzjXBAlIaUUpRoFU0qAWgWR0CUzVSFXaJzdX2UKGgGaAloD0MIHv8FggCNcECUhpRSlGgVTS8BaBZHQJTOVTbWVeN1fZQoaAZoCWgPQwiaIyu/TGhwQJSGlFKUaBVNKgFoFkdAlM8pR4yGjHV9lChoBmgJaA9DCJnVO9yO325AlIaUUpRoFU0xAWgWR0CU0MQGwA2idX2UKGgGaAloD0MIs5quJ3rEcECUhpRSlGgVTRkBaBZHQJTSabUgB911fZQoaAZoCWgPQwiz696KhJdxQJSGlFKUaBVN1QFoFkdAlNKeyiVSoHV9lChoBmgJaA9DCNkKmpbYm3BAlIaUUpRoFU00AWgWR0CU0zzfJmuldX2UKGgGaAloD0MIKnKIuLkSb0CUhpRSlGgVTSMBaBZHQJTTeys0YTF1fZQoaAZoCWgPQwjVB5J3TrFwQJSGlFKUaBVNXgFoFkdAlNQ6o60Y0nV9lChoBmgJaA9DCDoGZK93lW5AlIaUUpRoFU0/AWgWR0CU1Q+0PYnOdX2UKGgGaAloD0MI0qkrn2X9bUCUhpRSlGgVTS8BaBZHQJTVtemelKt1fZQoaAZoCWgPQwhA2v8AqyZwQJSGlFKUaBVNZQFoFkdAlNa/s/pt8HV9lChoBmgJaA9DCBuADYjQE3NAlIaUUpRoFU0WAWgWR0CU1spWFN+LdX2UKGgGaAloD0MIkuf6PlwqckCUhpRSlGgVTUIBaBZHQJTXCEnLJS11fZQoaAZoCWgPQwh6bwwBAJZxQJSGlFKUaBVNHwFoFkdAlNgKFRHf/HV9lChoBmgJaA9DCLa6nBJQpXJAlIaUUpRoFU18AWgWR0CU8KZy+6AfdX2UKGgGaAloD0MI/S/XogWMT0CUhpRSlGgVTegDaBZHQJTyOgBcRlJ1fZQoaAZoCWgPQwi8dmnDobRxQJSGlFKUaBVNcQFoFkdAlPKecDr7f3V9lChoBmgJaA9DCLDmAMEcrGxAlIaUUpRoFU0uAWgWR0CU88/QSi/PdX2UKGgGaAloD0MIx6F+FzYJbECUhpRSlGgVTW4BaBZHQJT0a/N7jT91fZQoaAZoCWgPQwjN6EfDqVdwQJSGlFKUaBVNLgFoFkdAlPR+s5n14HV9lChoBmgJaA9DCFnaqblcIW1AlIaUUpRoFU1KAWgWR0CU9LOavzOHdX2UKGgGaAloD0MIxLXawx5ZcUCUhpRSlGgVTSgBaBZHQJT2JN7Bwdd1fZQoaAZoCWgPQwhzf/W4731xQJSGlFKUaBVNTwFoFkdAlPamHck+o3V9lChoBmgJaA9DCKVquwk+F3BAlIaUUpRoFU0pAWgWR0CU+AX2ugYhdX2UKGgGaAloD0MIL4fddwz3b0CUhpRSlGgVTSkBaBZHQJT5py1eBxx1fZQoaAZoCWgPQwjNyYtMwBBvQJSGlFKUaBVNYAFoFkdAlPoYSYgJTnV9lChoBmgJaA9DCMpQFVMpb3BAlIaUUpRoFU0qAWgWR0CU++fK6nR+dX2UKGgGaAloD0MIXRWoxeALcUCUhpRSlGgVTb0BaBZHQJT8qPV/c351fZQoaAZoCWgPQwhy3v/HiWpxQJSGlFKUaBVNlAFoFkdAlPyoXTEzf3V9lChoBmgJaA9DCKOTpdb792xAlIaUUpRoFU2bA2gWR0CU/OnKnvUjdX2UKGgGaAloD0MIiJy+nq/TbUCUhpRSlGgVTR8BaBZHQJT9ImJFb3Z1fZQoaAZoCWgPQwi+Sj52F79xQJSGlFKUaBVNQgFoFkdAlP6M7dSEUXV9lChoBmgJaA9DCGeeXFMgpXBAlIaUUpRoFU0sAWgWR0CU/1xN7BwddX2UKGgGaAloD0MIfPFFezwecUCUhpRSlGgVTTABaBZHQJT/twaR6nl1fZQoaAZoCWgPQwhBn8iTJGxvQJSGlFKUaBVNTwFoFkdAlP/2sV+I/XV9lChoBmgJaA9DCCLeOv/2AXFAlIaUUpRoFU1sAWgWR0CVA+nvUjLTdX2UKGgGaAloD0MIHuG04IXAcUCUhpRSlGgVTSQBaBZHQJUESAFxGUh1fZQoaAZoCWgPQwhzR//LtaJvQJSGlFKUaBVNQQFoFkdAlQXsy31BdHV9lChoBmgJaA9DCA1xrIvb6XBAlIaUUpRoFU05AWgWR0CVB37IT4+KdX2UKGgGaAloD0MIriglBOumcECUhpRSlGgVTT0BaBZHQJUIgANoak11fZQoaAZoCWgPQwgQdR+AVL1wQJSGlFKUaBVNTgFoFkdAlQmLq6e5F3V9lChoBmgJaA9DCCaL+49MoXJAlIaUUpRoFU0yAWgWR0CVCoY9gWrPdX2UKGgGaAloD0MItOkI4GZpbUCUhpRSlGgVTRUCaBZHQJUKhU0elsR1fZQoaAZoCWgPQwhO7+L9eANxQJSGlFKUaBVNbQNoFkdAlQqSNbTts3V9lChoBmgJaA9DCMQJTKf12m1AlIaUUpRoFU13AWgWR0CVCt2kzoECdX2UKGgGaAloD0MIO22NCMblcECUhpRSlGgVTScBaBZHQJUK/lIVdop1fZQoaAZoCWgPQwiDo+TV+TlxQJSGlFKUaBVNNwFoFkdAlQv+9i+cpnV9lChoBmgJaA9DCKQYINGE2XFAlIaUUpRoFU1eAWgWR0CVDQluFYdRdX2UKGgGaAloD0MI58JILyrwcUCUhpRSlGgVS/9oFkdAlQ2rc9GI9HV9lChoBmgJaA9DCPWB5J3DhHBAlIaUUpRoFU3MAWgWR0CVDe2ovSMMdX2UKGgGaAloD0MI2bW93RKlbUCUhpRSlGgVTUIBaBZHQJUP8JVsDW91fZQoaAZoCWgPQwj3WtB7o85wQJSGlFKUaBVNVwFoFkdAlRJAxi5NGnV9lChoBmgJaA9DCIjyBS2k8nBAlIaUUpRoFU0zAWgWR0CVEkJF9a2XdX2UKGgGaAloD0MIuM6/Xfbjb0CUhpRSlGgVTTsBaBZHQJUTYVh1DBx1fZQoaAZoCWgPQwhxHeOKi7NtQJSGlFKUaBVNJAFoFkdAlRNuvdM0xnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}