alaeddinehamroun commited on
Commit
44c18e6
1 Parent(s): 598c247

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/layoutlm-base-uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - funsd
7
+ model-index:
8
+ - name: layoutlm-funsd
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-funsd
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6559
20
+ - Answer: {'precision': 0.7160220994475138, 'recall': 0.8009888751545118, 'f1': 0.7561260210035006, 'number': 809}
21
+ - Header: {'precision': 0.31932773109243695, 'recall': 0.31932773109243695, 'f1': 0.31932773109243695, 'number': 119}
22
+ - Question: {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065}
23
+ - Overall Precision: 0.7215
24
+ - Overall Recall: 0.7863
25
+ - Overall F1: 0.7525
26
+ - Overall Accuracy: 0.8165
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.8319 | 1.0 | 10 | 1.6114 | {'precision': 0.02668213457076566, 'recall': 0.02843016069221261, 'f1': 0.02752842609216038, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.21885521885521886, 'recall': 0.18309859154929578, 'f1': 0.19938650306748468, 'number': 1065} | 0.1244 | 0.1094 | 0.1164 | 0.3478 |
58
+ | 1.4535 | 2.0 | 20 | 1.2624 | {'precision': 0.2141119221411192, 'recall': 0.21755253399258342, 'f1': 0.2158185162477008, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45236250968241676, 'recall': 0.5483568075117371, 'f1': 0.4957555178268252, 'number': 1065} | 0.3597 | 0.3813 | 0.3702 | 0.5768 |
59
+ | 1.099 | 3.0 | 30 | 0.9496 | {'precision': 0.46866840731070497, 'recall': 0.4437577255871446, 'f1': 0.4558730158730159, 'number': 809} | {'precision': 0.05405405405405406, 'recall': 0.01680672268907563, 'f1': 0.02564102564102564, 'number': 119} | {'precision': 0.6174957118353345, 'recall': 0.676056338028169, 'f1': 0.6454504706409682, 'number': 1065} | 0.5490 | 0.5424 | 0.5457 | 0.7045 |
60
+ | 0.8218 | 4.0 | 40 | 0.7695 | {'precision': 0.5814606741573034, 'recall': 0.7676143386897404, 'f1': 0.6616941928609482, 'number': 809} | {'precision': 0.1935483870967742, 'recall': 0.10084033613445378, 'f1': 0.13259668508287292, 'number': 119} | {'precision': 0.6691983122362869, 'recall': 0.7446009389671362, 'f1': 0.7048888888888889, 'number': 1065} | 0.6160 | 0.7155 | 0.6620 | 0.7620 |
61
+ | 0.6633 | 5.0 | 50 | 0.7008 | {'precision': 0.6237006237006237, 'recall': 0.7416563658838071, 'f1': 0.6775832862789385, 'number': 809} | {'precision': 0.2571428571428571, 'recall': 0.15126050420168066, 'f1': 0.19047619047619044, 'number': 119} | {'precision': 0.7088055797733217, 'recall': 0.7633802816901408, 'f1': 0.7350813743218807, 'number': 1065} | 0.6567 | 0.7180 | 0.6860 | 0.7819 |
62
+ | 0.5651 | 6.0 | 60 | 0.6659 | {'precision': 0.6533192834562698, 'recall': 0.7663782447466008, 'f1': 0.7053469852104665, 'number': 809} | {'precision': 0.2564102564102564, 'recall': 0.25210084033613445, 'f1': 0.2542372881355932, 'number': 119} | {'precision': 0.7251655629139073, 'recall': 0.8225352112676056, 'f1': 0.7707875054993402, 'number': 1065} | 0.6711 | 0.7657 | 0.7153 | 0.7976 |
63
+ | 0.4862 | 7.0 | 70 | 0.6514 | {'precision': 0.6496815286624203, 'recall': 0.7564894932014833, 'f1': 0.6990291262135921, 'number': 809} | {'precision': 0.30927835051546393, 'recall': 0.25210084033613445, 'f1': 0.2777777777777778, 'number': 119} | {'precision': 0.7352206494587843, 'recall': 0.8291079812206573, 'f1': 0.7793468667255075, 'number': 1065} | 0.6808 | 0.7652 | 0.7205 | 0.8038 |
64
+ | 0.4421 | 8.0 | 80 | 0.6342 | {'precision': 0.6720085470085471, 'recall': 0.7775030902348579, 'f1': 0.7209169054441262, 'number': 809} | {'precision': 0.3017241379310345, 'recall': 0.29411764705882354, 'f1': 0.29787234042553185, 'number': 119} | {'precision': 0.7461928934010152, 'recall': 0.828169014084507, 'f1': 0.7850467289719626, 'number': 1065} | 0.6920 | 0.7757 | 0.7315 | 0.8087 |
65
+ | 0.3898 | 9.0 | 90 | 0.6485 | {'precision': 0.7045203969128997, 'recall': 0.7898640296662547, 'f1': 0.7447552447552448, 'number': 809} | {'precision': 0.32038834951456313, 'recall': 0.2773109243697479, 'f1': 0.29729729729729737, 'number': 119} | {'precision': 0.7669902912621359, 'recall': 0.815962441314554, 'f1': 0.7907188353048227, 'number': 1065} | 0.7191 | 0.7732 | 0.7452 | 0.8099 |
66
+ | 0.3531 | 10.0 | 100 | 0.6380 | {'precision': 0.7058177826564215, 'recall': 0.7948084054388134, 'f1': 0.7476744186046511, 'number': 809} | {'precision': 0.33980582524271846, 'recall': 0.29411764705882354, 'f1': 0.31531531531531537, 'number': 119} | {'precision': 0.7579672695951766, 'recall': 0.8262910798122066, 'f1': 0.7906558849955077, 'number': 1065} | 0.7163 | 0.7817 | 0.7476 | 0.8155 |
67
+ | 0.3226 | 11.0 | 110 | 0.6484 | {'precision': 0.72, 'recall': 0.8009888751545118, 'f1': 0.7583382094792276, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.2689075630252101, 'f1': 0.28193832599118945, 'number': 119} | {'precision': 0.7819481680071493, 'recall': 0.8215962441314554, 'f1': 0.8012820512820512, 'number': 1065} | 0.7311 | 0.7802 | 0.7549 | 0.8171 |
68
+ | 0.3066 | 12.0 | 120 | 0.6399 | {'precision': 0.7007616974972797, 'recall': 0.796044499381953, 'f1': 0.7453703703703702, 'number': 809} | {'precision': 0.3181818181818182, 'recall': 0.29411764705882354, 'f1': 0.3056768558951965, 'number': 119} | {'precision': 0.7610544217687075, 'recall': 0.8403755868544601, 'f1': 0.7987505577867025, 'number': 1065} | 0.7138 | 0.7898 | 0.7499 | 0.8195 |
69
+ | 0.2932 | 13.0 | 130 | 0.6628 | {'precision': 0.7155555555555555, 'recall': 0.796044499381953, 'f1': 0.7536571094207138, 'number': 809} | {'precision': 0.288, 'recall': 0.3025210084033613, 'f1': 0.2950819672131147, 'number': 119} | {'precision': 0.7783783783783784, 'recall': 0.8112676056338028, 'f1': 0.7944827586206896, 'number': 1065} | 0.7232 | 0.7747 | 0.7481 | 0.8163 |
70
+ | 0.2739 | 14.0 | 140 | 0.6550 | {'precision': 0.7190265486725663, 'recall': 0.8034610630407911, 'f1': 0.7589025102159953, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} | {'precision': 0.766695576756288, 'recall': 0.8300469483568075, 'f1': 0.7971145175834085, 'number': 1065} | 0.7232 | 0.7878 | 0.7541 | 0.8173 |
71
+ | 0.2715 | 15.0 | 150 | 0.6559 | {'precision': 0.7160220994475138, 'recall': 0.8009888751545118, 'f1': 0.7561260210035006, 'number': 809} | {'precision': 0.31932773109243695, 'recall': 0.31932773109243695, 'f1': 0.31932773109243695, 'number': 119} | {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065} | 0.7215 | 0.7863 | 0.7525 | 0.8165 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.34.1
77
+ - Pytorch 2.1.0+cu118
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.14.1
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b57fc235227095b15609a6bd839ecbba55ac066d729d09a7a0634c30139002b9
3
  size 450604414
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51415f82f2416a51acd055a555a91039cf059c9edf82102d193f2485b7e315d3
3
  size 450604414
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff