yulu2 commited on
Commit
8634b1a
1 Parent(s): c10d355

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -1,3 +1,54 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ tags:
4
+ - image-to-image
5
+ datasets:
6
+ - yulu2/InstructCV-Demo-Data
7
  ---
8
+
9
+ # INSTRUCTCV: YOUR TEXT-TO-IMAGE MODEL IS SECRETLY A VISION GENERALIST
10
+
11
+ GitHub: https://github.com
12
+
13
+ [![pCVB5B8.png](https://s1.ax1x.com/2023/06/11/pCVB5B8.png)](https://imgse.com/i/pCVB5B8)
14
+
15
+
16
+ ## Example
17
+
18
+ To use `InstructCV`, install `diffusers` using `main` for now. The pipeline will be available in the next release
19
+
20
+ ```bash
21
+ pip install diffusers accelerate safetensors transformers
22
+ ```
23
+
24
+ ```python
25
+ import PIL
26
+ import requests
27
+ import torch
28
+ from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
29
+
30
+ model_id = "yulu2/InstructCV"
31
+ pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, variant="ema")
32
+ pipe.to("cuda")
33
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
34
+
35
+ url = "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"
36
+
37
+ def download_image(url):
38
+ image = PIL.Image.open(requests.get(url, stream=True).raw)
39
+ image = PIL.ImageOps.exif_transpose(image)
40
+ image = image.convert("RGB")
41
+ return image
42
+
43
+ image = download_image(URL)
44
+ width, height = image.size
45
+ factor = 512 / max(width, height)
46
+ factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
47
+ width = int((width * factor) // 64) * 64
48
+ height = int((height * factor) // 64) * 64
49
+ image = ImageOps.fit(image, (width, height), method=Image.Resampling.LANCZOS)
50
+
51
+ prompt = "Detect the person."
52
+ images = pipe(prompt, image=image, num_inference_steps=100).images
53
+ images[0]
54
+ ```