al-098 commited on
Commit
fac31bc
1 Parent(s): c9a536f

Upload PPO trained agent 1M TS

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 249.68 +/- 35.52
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9644a688c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9644a68950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9644a689e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9644a68a70>", "_build": "<function ActorCriticPolicy._build at 0x7f9644a68b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f9644a68b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9644a68c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9644a68cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9644a68d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9644a68dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9644a68e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9644a401b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653027046.0662835, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD44mb6m16M/a7ERv+jnAb/JjZ2+opSpvQAAAAAAAAAATZFNPqqt0j6vHLS9IA2SvtcEWz2aFwa9AAAAAAAAAAAKQJG+28b8PpvDKD5Xr76+7viBvLA1nz0AAAAAAAAAADPF5j3cu3c9dskJvvRkQr4SNuy6DvLuuwAAAAAAAAAARkQ7PidPfj630jK+N0mNvpTwijvPPAa9AAAAAAAAAACaR609cY6zP4ygvj6y952+d5tKPY5zgjwAAAAAAAAAAOZyIr1c21q6Y0hRs4ScSLBk8wM5yoi7MwAAgD8AAIA/87aMPT0jVbvaBpO9uS4Ovn77Q7wWpmo+AACAPwAAAACz+Uo9jfF0Pr/2szs1AYm+WQiEPRDH2DwAAAAAAAAAANqSHT6XVAI/nPavvNu0zr4QzJY9at5kvAAAAAAAAAAALeh9PgE9kD7LGyu+T2lXviZIkDzeHgc9AAAAAAAAAACgIgO+4TEfPsScBbsen2W+/qvMvIxFvLoAAAAAAAAAAA3EnL3DEVG6xgLiOxF79DcSxMo6blCmNgAAAAAAAIA/pniVPawblz5XzMW9XJuHvkiR+Dvi56g8AAAAAAAAAAAzM2w9GiiqPwh75T6yqOW+pt4NPXmrMz4AAAAAAAAAADP+oLxITxk/EsWBPYEZpr4HGDo8MMlbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI65Cb4YYqbkCUhpRSlIwBbJRL8YwBdJRHQLKybNMoMKF1fZQoaAZoCWgPQwjhJM0f00JmQJSGlFKUaBVN6ANoFkdAsrKKW+oLonV9lChoBmgJaA9DCIMXfQVphm9AlIaUUpRoFUvwaBZHQLKy1N/vv0B1fZQoaAZoCWgPQwhivyfWaTxxQJSGlFKUaBVNBQFoFkdAsrLwV+I/JXV9lChoBmgJaA9DCN2yQ/xD2nBAlIaUUpRoFUvwaBZHQLKzpDst03h1fZQoaAZoCWgPQwj4GoLjsjFyQJSGlFKUaBVL9WgWR0Cys6xIz3yqdX2UKGgGaAloD0MIW5nwS/0cbkCUhpRSlGgVS/1oFkdAsrP5b3XZoXV9lChoBmgJaA9DCC5zuiymuHBAlIaUUpRoFUv9aBZHQLK0ROIInjR1fZQoaAZoCWgPQwgq/1peeTZxQJSGlFKUaBVL72gWR0CytGJy6tkndX2UKGgGaAloD0MIPlkxXB1sbUCUhpRSlGgVTQUBaBZHQLK0vJC0F8p1fZQoaAZoCWgPQwilL4ScNwtyQJSGlFKUaBVNhwFoFkdAsrTEKmbb13V9lChoBmgJaA9DCKT+eoWFwmRAlIaUUpRoFU3oA2gWR0CytN6fOD8MdX2UKGgGaAloD0MIPV+zXHbBcECUhpRSlGgVTRIBaBZHQLK1A2Zy+6B1fZQoaAZoCWgPQwjkht9N9/9wQJSGlFKUaBVNCAFoFkdAsrUXCCSRsHV9lChoBmgJaA9DCGFxOPNrBnFAlIaUUpRoFU0CAWgWR0CytScKb8WLdX2UKGgGaAloD0MIcF6c+OqscUCUhpRSlGgVTRwBaBZHQLK1LLGaQV91fZQoaAZoCWgPQwhblxqhnw9tQJSGlFKUaBVL6mgWR0CytVNaY/mldX2UKGgGaAloD0MIPDCA8CHhckCUhpRSlGgVTQwBaBZHQLK1gaPCEYh1fZQoaAZoCWgPQwjO3hlt1bFxQJSGlFKUaBVNAwFoFkdAsrY8EeQuEnV9lChoBmgJaA9DCFUTRN3HKXBAlIaUUpRoFUvtaBZHQLK2SR28qWl1fZQoaAZoCWgPQwijA5KwL/BwQJSGlFKUaBVNFQFoFkdAsrZi4Bmwq3V9lChoBmgJaA9DCHP1Y5P8mGxAlIaUUpRoFU0CAWgWR0CytshpYcNpdX2UKGgGaAloD0MICDvFqoEAcECUhpRSlGgVTRIBaBZHQLK3EADaGpN1fZQoaAZoCWgPQwhlxXB1wGBxQJSGlFKUaBVL9WgWR0CytyB/NJOGdX2UKGgGaAloD0MIEqERbBy/cECUhpRSlGgVS/toFkdAsrcowj+rEXV9lChoBmgJaA9DCFNCsKpe+HBAlIaUUpRoFUvpaBZHQLK3VAzHjp91fZQoaAZoCWgPQwj5akdxzrBxQJSGlFKUaBVL/GgWR0Cyt5OHvc8DdX2UKGgGaAloD0MI7q8e921HcECUhpRSlGgVTSYBaBZHQLK3spwjt5V1fZQoaAZoCWgPQwiSdqOPedZvQJSGlFKUaBVNlQJoFkdAsre068xsVXV9lChoBmgJaA9DCDeJQWBlw21AlIaUUpRoFUv3aBZHQLK3uiqABkt1fZQoaAZoCWgPQwjq6/ma5V1yQJSGlFKUaBVNFAFoFkdAsrfTM4cWCXV9lChoBmgJaA9DCPePheiQaHJAlIaUUpRoFU0XAWgWR0CyuR09U0emdX2UKGgGaAloD0MIA1/RrVd/bkCUhpRSlGgVTRoBaBZHQLK5SJiAlOZ1fZQoaAZoCWgPQwjGbp9VJihxQJSGlFKUaBVL/GgWR0CyuWLcKw6idX2UKGgGaAloD0MImFEst/R1cECUhpRSlGgVS/NoFkdAsrmYH9m6G3V9lChoBmgJaA9DCDJYcao1qnBAlIaUUpRoFUvvaBZHQLK5qBJqZc91fZQoaAZoCWgPQwjdW5GYoO5wQJSGlFKUaBVNVAFoFkdAsrnNbgTAWXV9lChoBmgJaA9DCCjXFMhsjm9AlIaUUpRoFU0GAWgWR0CyueNDx9XtdX2UKGgGaAloD0MI81meB/ehYUCUhpRSlGgVTegDaBZHQLK56VgQYk51fZQoaAZoCWgPQwitiQW+oqVvQJSGlFKUaBVL+mgWR0CyufrIYFaCdX2UKGgGaAloD0MIX5fhPx1KcECUhpRSlGgVS+1oFkdAsroYgpz90nV9lChoBmgJaA9DCF9f61Kj7W9AlIaUUpRoFUvqaBZHQLK6LdjoZAJ1fZQoaAZoCWgPQwglyXN9XzlxQJSGlFKUaBVL72gWR0CyulZO8CgcdX2UKGgGaAloD0MI7YLBNff1b0CUhpRSlGgVTQQBaBZHQLK6a3r2QGR1fZQoaAZoCWgPQwghVn+EoaxwQJSGlFKUaBVNSAFoFkdAsrsDrkbPyHV9lChoBmgJaA9DCLBZLhvdm3FAlIaUUpRoFUvqaBZHQLK7ditaIN51fZQoaAZoCWgPQwj60AX1rcNtQJSGlFKUaBVL5GgWR0Cyu86SPluFdX2UKGgGaAloD0MI/FI/b6rFbkCUhpRSlGgVS/doFkdAsrwUovzvqnV9lChoBmgJaA9DCLsru2Dw2nBAlIaUUpRoFU0dAWgWR0CyvCuMqBmPdX2UKGgGaAloD0MIkxlvK73EcUCUhpRSlGgVS/JoFkdAsrxZuVHFxXV9lChoBmgJaA9DCI0lrI0xHG9AlIaUUpRoFU0CAWgWR0CyvHTnvDxcdX2UKGgGaAloD0MI5Ga4Ad9DckCUhpRSlGgVTRMBaBZHQLK8ixsVLzx1fZQoaAZoCWgPQwgtJjYf1yNsQJSGlFKUaBVNCAFoFkdAsry7Ck43m3V9lChoBmgJaA9DCLPNjemJMG9AlIaUUpRoFU0EAWgWR0CyvMiC4BmxdX2UKGgGaAloD0MIs+20NWLLckCUhpRSlGgVTSQBaBZHQLK8ykZ75VR1fZQoaAZoCWgPQwhtcY3PZDVwQJSGlFKUaBVL/2gWR0CyvQGpVCHAdX2UKGgGaAloD0MI7unqjgV2cUCUhpRSlGgVS+NoFkdAsr3dRoAXEnV9lChoBmgJaA9DCBBc5QmExXBAlIaUUpRoFU06AWgWR0CyvlmUW2w3dX2UKGgGaAloD0MIiJ0pdB5ccECUhpRSlGgVS/1oFkdAsr6JHDrJKnV9lChoBmgJaA9DCLLa/L8qpnBAlIaUUpRoFUvnaBZHQLK+j5hBqsV1fZQoaAZoCWgPQwizRGeZRT9zQJSGlFKUaBVL5WgWR0CyvszuSfUXdX2UKGgGaAloD0MIDd/CunERb0CUhpRSlGgVS/5oFkdAsr7mbSZ0CHV9lChoBmgJaA9DCPuytFOzl3FAlIaUUpRoFUvtaBZHQLK+/yquKXR1fZQoaAZoCWgPQwhYrrfNVHhkQJSGlFKUaBVN6ANoFkdAsr8184Pwu3V9lChoBmgJaA9DCA5N2ekHbnJAlIaUUpRoFUv4aBZHQLK/b3lS0jV1fZQoaAZoCWgPQwh7v9GOGz1wQJSGlFKUaBVNBQFoFkdAsr+ECfYjB3V9lChoBmgJaA9DCOwuUFJgM3JAlIaUUpRoFU0HAWgWR0Cyv5gTVUdadX2UKGgGaAloD0MIcHhBRKqecUCUhpRSlGgVS/JoFkdAsr+dXKbKBHV9lChoBmgJaA9DCA4uHXOejGFAlIaUUpRoFU3oA2gWR0Cyv8lU2kzodX2UKGgGaAloD0MIaTUk7rEAcUCUhpRSlGgVS/NoFkdAssBzSKFZgXV9lChoBmgJaA9DCAX6RJ6kB2xAlIaUUpRoFU18AWgWR0CywIaTW5H3dX2UKGgGaAloD0MI4q5eRUZVb0CUhpRSlGgVS/FoFkdAssDfHwPRRnV9lChoBmgJaA9DCAJHAg22fWxAlIaUUpRoFUvraBZHQLLA+z67/XJ1fZQoaAZoCWgPQwiX/iWpzGBvQJSGlFKUaBVL+mgWR0CywSnm/336dX2UKGgGaAloD0MIdjV5yuoackCUhpRSlGgVS/RoFkdAssFqesgdO3V9lChoBmgJaA9DCC9vDtcqt3JAlIaUUpRoFU0LA2gWR0CywXXMMZxadX2UKGgGaAloD0MILbKd76cucECUhpRSlGgVTQkBaBZHQLLBi9Sde6Z1fZQoaAZoCWgPQwjDYz+LJRRxQJSGlFKUaBVL5mgWR0CywZJ6yB07dX2UKGgGaAloD0MIbhea6zTlbUCUhpRSlGgVTQkBaBZHQLLBsgFHJ911fZQoaAZoCWgPQwiUhhqFZO5wQJSGlFKUaBVNCAFoFkdAssInZmI0qHV9lChoBmgJaA9DCJdyvtj7X29AlIaUUpRoFUv1aBZHQLLCPX6InBt1fZQoaAZoCWgPQwjThsPSgOpxQJSGlFKUaBVNCwFoFkdAssJBjkMkQnV9lChoBmgJaA9DCORLqOBwIXJAlIaUUpRoFU0kAWgWR0Cywlbfxc3VdX2UKGgGaAloD0MISfdzCvLAcECUhpRSlGgVTUMBaBZHQLLCyM6zVtp1fZQoaAZoCWgPQwihvI+jOZxwQJSGlFKUaBVL/2gWR0Cywu9nTRYzdX2UKGgGaAloD0MIvMrapvhScUCUhpRSlGgVTQwBaBZHQLLDISm65G11fZQoaAZoCWgPQwi+iSE5mT5uQJSGlFKUaBVL9WgWR0Cyw4TibUgCdX2UKGgGaAloD0MID2Q9tXqAb0CUhpRSlGgVS+doFkdAssOuNtIkJXV9lChoBmgJaA9DCNoc5zahLXFAlIaUUpRoFU0AAWgWR0Cyw+ZyIYWMdX2UKGgGaAloD0MIjsu4qQG9bkCUhpRSlGgVTQEBaBZHQLLEDUgB91F1fZQoaAZoCWgPQwgBiSZQBLlxQJSGlFKUaBVNAwFoFkdAssQbzd1uBXV9lChoBmgJaA9DCLPQzmkWWXFAlIaUUpRoFU1QAWgWR0CyxFB9gF5fdX2UKGgGaAloD0MItHdGWxXkcUCUhpRSlGgVTRIBaBZHQLLEZ4Oc2BJ1fZQoaAZoCWgPQwixahDmNkpwQJSGlFKUaBVL4WgWR0CyxH79ycTbdX2UKGgGaAloD0MILXqnAu4MY0CUhpRSlGgVTegDaBZHQLLEi5VfeDZ1fZQoaAZoCWgPQwjb3JieMKZvQJSGlFKUaBVL/GgWR0CyxKixA0KrdX2UKGgGaAloD0MI6gWf5uS+bkCUhpRSlGgVS/FoFkdAssSo8YAKfHV9lChoBmgJaA9DCCmuKvsuHW9AlIaUUpRoFU0cAWgWR0CyxRl4TsY3dX2UKGgGaAloD0MI2XdF8L9ickCUhpRSlGgVS/JoFkdAssVLlQuVX3V9lChoBmgJaA9DCKbUJeOYlnFAlIaUUpRoFUvpaBZHQLLFY/fwZwZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_modelv1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5db11d80d4e0e34d063a8afcc04e13a0875a819880a9dba5b600231cfe791c5
3
+ size 144049
ppo_modelv1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo_modelv1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9644a688c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9644a68950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9644a689e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9644a68a70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9644a68b00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9644a68b90>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9644a68c20>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9644a68cb0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9644a68d40>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9644a68dd0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9644a68e60>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9644a401b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1653027046.0662835,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAD44mb6m16M/a7ERv+jnAb/JjZ2+opSpvQAAAAAAAAAATZFNPqqt0j6vHLS9IA2SvtcEWz2aFwa9AAAAAAAAAAAKQJG+28b8PpvDKD5Xr76+7viBvLA1nz0AAAAAAAAAADPF5j3cu3c9dskJvvRkQr4SNuy6DvLuuwAAAAAAAAAARkQ7PidPfj630jK+N0mNvpTwijvPPAa9AAAAAAAAAACaR609cY6zP4ygvj6y952+d5tKPY5zgjwAAAAAAAAAAOZyIr1c21q6Y0hRs4ScSLBk8wM5yoi7MwAAgD8AAIA/87aMPT0jVbvaBpO9uS4Ovn77Q7wWpmo+AACAPwAAAACz+Uo9jfF0Pr/2szs1AYm+WQiEPRDH2DwAAAAAAAAAANqSHT6XVAI/nPavvNu0zr4QzJY9at5kvAAAAAAAAAAALeh9PgE9kD7LGyu+T2lXviZIkDzeHgc9AAAAAAAAAACgIgO+4TEfPsScBbsen2W+/qvMvIxFvLoAAAAAAAAAAA3EnL3DEVG6xgLiOxF79DcSxMo6blCmNgAAAAAAAIA/pniVPawblz5XzMW9XJuHvkiR+Dvi56g8AAAAAAAAAAAzM2w9GiiqPwh75T6yqOW+pt4NPXmrMz4AAAAAAAAAADP+oLxITxk/EsWBPYEZpr4HGDo8MMlbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVUBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI65Cb4YYqbkCUhpRSlIwBbJRL8YwBdJRHQLKybNMoMKF1fZQoaAZoCWgPQwjhJM0f00JmQJSGlFKUaBVN6ANoFkdAsrKKW+oLonV9lChoBmgJaA9DCIMXfQVphm9AlIaUUpRoFUvwaBZHQLKy1N/vv0B1fZQoaAZoCWgPQwhivyfWaTxxQJSGlFKUaBVNBQFoFkdAsrLwV+I/JXV9lChoBmgJaA9DCN2yQ/xD2nBAlIaUUpRoFUvwaBZHQLKzpDst03h1fZQoaAZoCWgPQwj4GoLjsjFyQJSGlFKUaBVL9WgWR0Cys6xIz3yqdX2UKGgGaAloD0MIW5nwS/0cbkCUhpRSlGgVS/1oFkdAsrP5b3XZoXV9lChoBmgJaA9DCC5zuiymuHBAlIaUUpRoFUv9aBZHQLK0ROIInjR1fZQoaAZoCWgPQwgq/1peeTZxQJSGlFKUaBVL72gWR0CytGJy6tkndX2UKGgGaAloD0MIPlkxXB1sbUCUhpRSlGgVTQUBaBZHQLK0vJC0F8p1fZQoaAZoCWgPQwilL4ScNwtyQJSGlFKUaBVNhwFoFkdAsrTEKmbb13V9lChoBmgJaA9DCKT+eoWFwmRAlIaUUpRoFU3oA2gWR0CytN6fOD8MdX2UKGgGaAloD0MIPV+zXHbBcECUhpRSlGgVTRIBaBZHQLK1A2Zy+6B1fZQoaAZoCWgPQwjkht9N9/9wQJSGlFKUaBVNCAFoFkdAsrUXCCSRsHV9lChoBmgJaA9DCGFxOPNrBnFAlIaUUpRoFU0CAWgWR0CytScKb8WLdX2UKGgGaAloD0MIcF6c+OqscUCUhpRSlGgVTRwBaBZHQLK1LLGaQV91fZQoaAZoCWgPQwhblxqhnw9tQJSGlFKUaBVL6mgWR0CytVNaY/mldX2UKGgGaAloD0MIPDCA8CHhckCUhpRSlGgVTQwBaBZHQLK1gaPCEYh1fZQoaAZoCWgPQwjO3hlt1bFxQJSGlFKUaBVNAwFoFkdAsrY8EeQuEnV9lChoBmgJaA9DCFUTRN3HKXBAlIaUUpRoFUvtaBZHQLK2SR28qWl1fZQoaAZoCWgPQwijA5KwL/BwQJSGlFKUaBVNFQFoFkdAsrZi4Bmwq3V9lChoBmgJaA9DCHP1Y5P8mGxAlIaUUpRoFU0CAWgWR0CytshpYcNpdX2UKGgGaAloD0MICDvFqoEAcECUhpRSlGgVTRIBaBZHQLK3EADaGpN1fZQoaAZoCWgPQwhlxXB1wGBxQJSGlFKUaBVL9WgWR0CytyB/NJOGdX2UKGgGaAloD0MIEqERbBy/cECUhpRSlGgVS/toFkdAsrcowj+rEXV9lChoBmgJaA9DCFNCsKpe+HBAlIaUUpRoFUvpaBZHQLK3VAzHjp91fZQoaAZoCWgPQwj5akdxzrBxQJSGlFKUaBVL/GgWR0Cyt5OHvc8DdX2UKGgGaAloD0MI7q8e921HcECUhpRSlGgVTSYBaBZHQLK3spwjt5V1fZQoaAZoCWgPQwiSdqOPedZvQJSGlFKUaBVNlQJoFkdAsre068xsVXV9lChoBmgJaA9DCDeJQWBlw21AlIaUUpRoFUv3aBZHQLK3uiqABkt1fZQoaAZoCWgPQwjq6/ma5V1yQJSGlFKUaBVNFAFoFkdAsrfTM4cWCXV9lChoBmgJaA9DCPePheiQaHJAlIaUUpRoFU0XAWgWR0CyuR09U0emdX2UKGgGaAloD0MIA1/RrVd/bkCUhpRSlGgVTRoBaBZHQLK5SJiAlOZ1fZQoaAZoCWgPQwjGbp9VJihxQJSGlFKUaBVL/GgWR0CyuWLcKw6idX2UKGgGaAloD0MImFEst/R1cECUhpRSlGgVS/NoFkdAsrmYH9m6G3V9lChoBmgJaA9DCDJYcao1qnBAlIaUUpRoFUvvaBZHQLK5qBJqZc91fZQoaAZoCWgPQwjdW5GYoO5wQJSGlFKUaBVNVAFoFkdAsrnNbgTAWXV9lChoBmgJaA9DCCjXFMhsjm9AlIaUUpRoFU0GAWgWR0CyueNDx9XtdX2UKGgGaAloD0MI81meB/ehYUCUhpRSlGgVTegDaBZHQLK56VgQYk51fZQoaAZoCWgPQwitiQW+oqVvQJSGlFKUaBVL+mgWR0CyufrIYFaCdX2UKGgGaAloD0MIX5fhPx1KcECUhpRSlGgVS+1oFkdAsroYgpz90nV9lChoBmgJaA9DCF9f61Kj7W9AlIaUUpRoFUvqaBZHQLK6LdjoZAJ1fZQoaAZoCWgPQwglyXN9XzlxQJSGlFKUaBVL72gWR0CyulZO8CgcdX2UKGgGaAloD0MI7YLBNff1b0CUhpRSlGgVTQQBaBZHQLK6a3r2QGR1fZQoaAZoCWgPQwghVn+EoaxwQJSGlFKUaBVNSAFoFkdAsrsDrkbPyHV9lChoBmgJaA9DCLBZLhvdm3FAlIaUUpRoFUvqaBZHQLK7ditaIN51fZQoaAZoCWgPQwj60AX1rcNtQJSGlFKUaBVL5GgWR0Cyu86SPluFdX2UKGgGaAloD0MI/FI/b6rFbkCUhpRSlGgVS/doFkdAsrwUovzvqnV9lChoBmgJaA9DCLsru2Dw2nBAlIaUUpRoFU0dAWgWR0CyvCuMqBmPdX2UKGgGaAloD0MIkxlvK73EcUCUhpRSlGgVS/JoFkdAsrxZuVHFxXV9lChoBmgJaA9DCI0lrI0xHG9AlIaUUpRoFU0CAWgWR0CyvHTnvDxcdX2UKGgGaAloD0MI5Ga4Ad9DckCUhpRSlGgVTRMBaBZHQLK8ixsVLzx1fZQoaAZoCWgPQwgtJjYf1yNsQJSGlFKUaBVNCAFoFkdAsry7Ck43m3V9lChoBmgJaA9DCLPNjemJMG9AlIaUUpRoFU0EAWgWR0CyvMiC4BmxdX2UKGgGaAloD0MIs+20NWLLckCUhpRSlGgVTSQBaBZHQLK8ykZ75VR1fZQoaAZoCWgPQwhtcY3PZDVwQJSGlFKUaBVL/2gWR0CyvQGpVCHAdX2UKGgGaAloD0MI7unqjgV2cUCUhpRSlGgVS+NoFkdAsr3dRoAXEnV9lChoBmgJaA9DCBBc5QmExXBAlIaUUpRoFU06AWgWR0CyvlmUW2w3dX2UKGgGaAloD0MIiJ0pdB5ccECUhpRSlGgVS/1oFkdAsr6JHDrJKnV9lChoBmgJaA9DCLLa/L8qpnBAlIaUUpRoFUvnaBZHQLK+j5hBqsV1fZQoaAZoCWgPQwizRGeZRT9zQJSGlFKUaBVL5WgWR0CyvszuSfUXdX2UKGgGaAloD0MIDd/CunERb0CUhpRSlGgVS/5oFkdAsr7mbSZ0CHV9lChoBmgJaA9DCPuytFOzl3FAlIaUUpRoFUvtaBZHQLK+/yquKXR1fZQoaAZoCWgPQwhYrrfNVHhkQJSGlFKUaBVN6ANoFkdAsr8184Pwu3V9lChoBmgJaA9DCA5N2ekHbnJAlIaUUpRoFUv4aBZHQLK/b3lS0jV1fZQoaAZoCWgPQwh7v9GOGz1wQJSGlFKUaBVNBQFoFkdAsr+ECfYjB3V9lChoBmgJaA9DCOwuUFJgM3JAlIaUUpRoFU0HAWgWR0Cyv5gTVUdadX2UKGgGaAloD0MIcHhBRKqecUCUhpRSlGgVS/JoFkdAsr+dXKbKBHV9lChoBmgJaA9DCA4uHXOejGFAlIaUUpRoFU3oA2gWR0Cyv8lU2kzodX2UKGgGaAloD0MIaTUk7rEAcUCUhpRSlGgVS/NoFkdAssBzSKFZgXV9lChoBmgJaA9DCAX6RJ6kB2xAlIaUUpRoFU18AWgWR0CywIaTW5H3dX2UKGgGaAloD0MI4q5eRUZVb0CUhpRSlGgVS/FoFkdAssDfHwPRRnV9lChoBmgJaA9DCAJHAg22fWxAlIaUUpRoFUvraBZHQLLA+z67/XJ1fZQoaAZoCWgPQwiX/iWpzGBvQJSGlFKUaBVL+mgWR0CywSnm/336dX2UKGgGaAloD0MIdjV5yuoackCUhpRSlGgVS/RoFkdAssFqesgdO3V9lChoBmgJaA9DCC9vDtcqt3JAlIaUUpRoFU0LA2gWR0CywXXMMZxadX2UKGgGaAloD0MILbKd76cucECUhpRSlGgVTQkBaBZHQLLBi9Sde6Z1fZQoaAZoCWgPQwjDYz+LJRRxQJSGlFKUaBVL5mgWR0CywZJ6yB07dX2UKGgGaAloD0MIbhea6zTlbUCUhpRSlGgVTQkBaBZHQLLBsgFHJ911fZQoaAZoCWgPQwiUhhqFZO5wQJSGlFKUaBVNCAFoFkdAssInZmI0qHV9lChoBmgJaA9DCJdyvtj7X29AlIaUUpRoFUv1aBZHQLLCPX6InBt1fZQoaAZoCWgPQwjThsPSgOpxQJSGlFKUaBVNCwFoFkdAssJBjkMkQnV9lChoBmgJaA9DCORLqOBwIXJAlIaUUpRoFU0kAWgWR0Cywlbfxc3VdX2UKGgGaAloD0MISfdzCvLAcECUhpRSlGgVTUMBaBZHQLLCyM6zVtp1fZQoaAZoCWgPQwihvI+jOZxwQJSGlFKUaBVL/2gWR0Cywu9nTRYzdX2UKGgGaAloD0MIvMrapvhScUCUhpRSlGgVTQwBaBZHQLLDISm65G11fZQoaAZoCWgPQwi+iSE5mT5uQJSGlFKUaBVL9WgWR0Cyw4TibUgCdX2UKGgGaAloD0MID2Q9tXqAb0CUhpRSlGgVS+doFkdAssOuNtIkJXV9lChoBmgJaA9DCNoc5zahLXFAlIaUUpRoFU0AAWgWR0Cyw+ZyIYWMdX2UKGgGaAloD0MIjsu4qQG9bkCUhpRSlGgVTQEBaBZHQLLEDUgB91F1fZQoaAZoCWgPQwgBiSZQBLlxQJSGlFKUaBVNAwFoFkdAssQbzd1uBXV9lChoBmgJaA9DCLPQzmkWWXFAlIaUUpRoFU1QAWgWR0CyxFB9gF5fdX2UKGgGaAloD0MItHdGWxXkcUCUhpRSlGgVTRIBaBZHQLLEZ4Oc2BJ1fZQoaAZoCWgPQwixahDmNkpwQJSGlFKUaBVL4WgWR0CyxH79ycTbdX2UKGgGaAloD0MILXqnAu4MY0CUhpRSlGgVTegDaBZHQLLEi5VfeDZ1fZQoaAZoCWgPQwjb3JieMKZvQJSGlFKUaBVL/GgWR0CyxKixA0KrdX2UKGgGaAloD0MI6gWf5uS+bkCUhpRSlGgVS/FoFkdAssSo8YAKfHV9lChoBmgJaA9DCCmuKvsuHW9AlIaUUpRoFU0cAWgWR0CyxRl4TsY3dX2UKGgGaAloD0MI2XdF8L9ickCUhpRSlGgVS/JoFkdAssVLlQuVX3V9lChoBmgJaA9DCKbUJeOYlnFAlIaUUpRoFUvpaBZHQLLFY/fwZwZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_modelv1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8001f0a029c7148361e223b801725409cd63588fcf6af7c5232c09268c219a31
3
+ size 84893
ppo_modelv1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ade04e4ea5b8c3e2cec91b0785e0cc338d83be5ab153b538528aea30a69e9a
3
+ size 43201
ppo_modelv1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_modelv1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45b837bd745294c0cdf7316a86452b9493eaff0907eeef1f3fc17dd9520fd11b
3
+ size 171632
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.68201918360896, "std_reward": 35.52168372139947, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T08:14:35.838445"}