aksxaay commited on
Commit
419b276
·
1 Parent(s): 57cd907

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-cord_100
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: test
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9135893648449039
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9258982035928144
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9197026022304833
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9252971137521222
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-cord_100
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3248
47
+ - Precision: 0.9136
48
+ - Recall: 0.9259
49
+ - F1: 0.9197
50
+ - Accuracy: 0.9253
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 2500
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 4.17 | 250 | 1.0188 | 0.7447 | 0.7949 | 0.7690 | 0.8031 |
82
+ | 1.4061 | 8.33 | 500 | 0.5545 | 0.8420 | 0.8653 | 0.8535 | 0.8616 |
83
+ | 1.4061 | 12.5 | 750 | 0.4298 | 0.8884 | 0.9057 | 0.8970 | 0.9045 |
84
+ | 0.3563 | 16.67 | 1000 | 0.3477 | 0.9094 | 0.9244 | 0.9169 | 0.9295 |
85
+ | 0.3563 | 20.83 | 1250 | 0.3189 | 0.9137 | 0.9274 | 0.9205 | 0.9312 |
86
+ | 0.1617 | 25.0 | 1500 | 0.3189 | 0.9210 | 0.9341 | 0.9275 | 0.9393 |
87
+ | 0.1617 | 29.17 | 1750 | 0.3158 | 0.9096 | 0.9259 | 0.9177 | 0.9300 |
88
+ | 0.0942 | 33.33 | 2000 | 0.3198 | 0.9117 | 0.9274 | 0.9195 | 0.9283 |
89
+ | 0.0942 | 37.5 | 2250 | 0.3259 | 0.9112 | 0.9289 | 0.9199 | 0.9300 |
90
+ | 0.0674 | 41.67 | 2500 | 0.3248 | 0.9136 | 0.9259 | 0.9197 | 0.9253 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.26.1
96
+ - Pytorch 1.13.1+cu116
97
+ - Datasets 2.10.0
98
+ - Tokenizers 0.13.2