NEOX / tools /ckpts /inspect_checkpoints.py
akswelh's picture
Upload 251 files
d90b3a8 verified
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Adapted from https://github.com/awaelchli/pytorch-lightning-snippets/blob/master/checkpoint/peek.py
import code
import os
import re
from argparse import ArgumentParser, Namespace
from collections.abc import Mapping, Sequence
from pathlib import Path
import torch
class COLORS:
BLUE = "\033[94m"
CYAN = "\033[96m"
GREEN = "\033[92m"
RED = "\033[31m"
YELLOW = "\033[33m"
MAGENTA = "\033[35m"
WHITE = "\033[37m"
UNDERLINE = "\033[4m"
END = "\033[0m"
PRIMITIVE_TYPES = (int, float, bool, str, type)
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split("([0-9]+)", str(key))]
return sorted(l, key=alphanum_key)
def sizeof_fmt(num, suffix="B"):
for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]:
if abs(num) < 1024.0:
return "%3.1f%s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f%s%s" % (num, "Yi", suffix)
def pretty_print(contents: dict):
"""Prints a nice summary of the top-level contents in a checkpoint dictionary."""
col_size = max(len(str(k)) for k in contents)
for k, v in sorted(contents.items()):
key_length = len(str(k))
line = " " * (col_size - key_length)
line += f"{k}: {COLORS.BLUE}{type(v).__name__}{COLORS.END}"
if isinstance(v, dict):
pretty_print(v)
elif isinstance(v, PRIMITIVE_TYPES):
line += f" = "
line += f"{COLORS.CYAN}{repr(v)}{COLORS.END}"
elif isinstance(v, Sequence):
line += ", "
line += f"{COLORS.CYAN}len={len(v)}{COLORS.END}"
elif isinstance(v, torch.Tensor):
if v.ndimension() in (0, 1) and v.numel() == 1:
line += f" = "
line += f"{COLORS.CYAN}{v.item()}{COLORS.END}"
else:
line += ", "
line += f"{COLORS.CYAN}shape={list(v.shape)}{COLORS.END}"
line += ", "
line += f"{COLORS.CYAN}dtype={v.dtype}{COLORS.END}"
line += (
", "
+ f"{COLORS.CYAN}size={sizeof_fmt(v.nelement() * v.element_size())}{COLORS.END}"
)
print(line)
def common_entries(*dcts):
if not dcts:
return
for i in set(dcts[0]).intersection(*dcts[1:]):
yield (i,) + tuple(d[i] for d in dcts)
def pretty_print_double(contents1: dict, contents2: dict, args):
"""Prints a nice summary of the top-level contents in a checkpoint dictionary."""
col_size = max(
max(len(str(k)) for k in contents1), max(len(str(k)) for k in contents2)
)
common_keys = list(contents1.keys() & contents2.keys())
uncommon_keys_1 = [i for i in contents2.keys() if i not in common_keys]
uncommon_keys_2 = [i for i in contents1.keys() if i not in common_keys]
diffs_found = False
if uncommon_keys_1 + uncommon_keys_2:
diffs_found = True
if uncommon_keys_1:
print(
f"{COLORS.RED}{len(uncommon_keys_1)} key(s) found in ckpt 1 that isn't present in ckpt 2:{COLORS.END} \n\t{COLORS.BLUE}{' '.join(uncommon_keys_1)}{COLORS.END}"
)
if uncommon_keys_2:
print(
f"{COLORS.RED}{len(uncommon_keys_2)} key(s) found in ckpt 2 that isn't present in ckpt 1:{COLORS.END} \n\t{COLORS.BLUE}{' '.join(uncommon_keys_2)}{COLORS.END}"
)
for k, v1, v2 in sorted(common_entries(contents1, contents2)):
key_length = len(str(k))
line = " " * (col_size - key_length)
if type(v1) != type(v2):
print(
f"{COLORS.RED}{k} is a different type between ckpt1 and ckpt2: ({type(v1).__name__} vs. {type(v2).__name__}){COLORS.END}"
)
continue
else:
prefix = f"{k}: {COLORS.BLUE}{type(v1).__name__} | {type(v2).__name__}{COLORS.END}"
if isinstance(v1, dict):
pretty_print_double(v1, v2, args)
elif isinstance(v1, PRIMITIVE_TYPES):
if repr(v1) != repr(v2):
c = COLORS.RED
line += f" = "
line += f"{c}{repr(v1)} | {repr(v2)}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += f" = "
line += f"{c}{repr(v1)} | {repr(v2)}{COLORS.END}"
elif isinstance(v1, Sequence):
if len(v1) != len(v2):
c = COLORS.RED
line += ", "
line += f"{c}len={len(v1)} | len={len(v2)}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += ", "
line += f"{c}len={len(v1)} | len={len(v2)}{COLORS.END}"
elif isinstance(v1, torch.Tensor):
if v1.ndimension() != v2.ndimension():
c = COLORS.RED
else:
c = COLORS.CYAN
if (v1.ndimension() in (0, 1) and v1.numel() == 1) and (
v2.ndimension() in (0, 1) and v2.numel() == 1
):
if not args.diff:
line += f" = "
line += f"{c}{v1.item()} | {c}{v2.item()}{COLORS.END}"
else:
if list(v1.shape) != list(v2.shape):
c = COLORS.RED
line += ", "
line += f"{c}shape={list(v1.shape)} | shape={list(v2.shape)}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += ", "
line += f"{c}shape={list(v1.shape)} | shape={list(v2.shape)}{COLORS.END}"
if v1.dtype != v2.dtype:
c = COLORS.RED
line += f"{c}dtype={v1.dtype} | dtype={v2.dtype}{COLORS.END}"
else:
c = COLORS.CYAN
if not args.diff:
line += ", "
line += f"{c}dtype={v1.dtype} | dtype={v2.dtype}{COLORS.END}"
if list(v1.shape) == list(v2.shape):
if torch.allclose(v1, v2):
if not args.diff:
line += f", {COLORS.CYAN}VALUES EQUAL{COLORS.END}"
else:
line += f", {COLORS.RED}VALUES DIFFER{COLORS.END}"
if line.replace(" ", "") != "":
line = prefix + line
print(line)
diffs_found = True
if args.diff and not diffs_found:
pass
else:
if not args.diff:
print("\n")
return diffs_found
def get_attribute(obj: object, name: str) -> object:
if isinstance(obj, Mapping):
return obj[name]
if isinstance(obj, Namespace):
return obj.name
return getattr(object, name)
def get_files(pth):
if os.path.isdir(pth):
files = list(Path(pth).glob("*.pt")) + list(Path(pth).glob("*.ckpt"))
elif os.path.isfile(pth):
assert pth.endswith(".pt") or pth.endswith(".ckpt")
files = [Path(pth)]
else:
raise ValueError("Dir / File not found.")
return natural_sort(files)
def peek(args: Namespace):
files = get_files(args.dir)
for file in files:
file = Path(file).absolute()
print(f"{COLORS.GREEN}{file.name}:{COLORS.END}")
ckpt = torch.load(file, map_location=torch.device("cpu"))
selection = dict()
attribute_names = args.attributes or list(ckpt.keys())
for name in attribute_names:
parts = name.split("/")
current = ckpt
for part in parts:
current = get_attribute(current, part)
selection.update({name: current})
pretty_print(selection)
print("\n")
if args.interactive:
code.interact(
banner="Entering interactive shell. You can access the checkpoint contents through the local variable 'checkpoint'.",
local={"checkpoint": ckpt, "torch": torch},
)
def get_shared_fnames(files_1, files_2):
names_1 = [Path(i).name for i in files_1]
names_1_parent = Path(files_1[0]).parent
names_2 = [Path(i).name for i in files_2]
names_2_parent = Path(files_2[0]).parent
shared_names = list(set.intersection(*map(set, [names_1, names_2])))
return [names_1_parent / i for i in shared_names], [
names_2_parent / i for i in shared_names
]
def get_selection(filename, args):
ckpt = torch.load(filename, map_location=torch.device("cpu"))
selection = dict()
attribute_names = args.attributes or list(ckpt.keys())
for name in attribute_names:
parts = name.split("/")
current = ckpt
for part in parts:
current = get_attribute(current, part)
selection.update({name: current})
return selection
def compare(args: Namespace):
dirs = [i.strip() for i in args.dir.split(",")]
assert len(dirs) == 2, "Only works with 2 directories / files"
files_1 = get_files(dirs[0])
files_2 = get_files(dirs[1])
files_1, files_2 = get_shared_fnames(files_1, files_2)
for file1, file2 in zip(files_1, files_2):
file1 = Path(file1).absolute()
file2 = Path(file2).absolute()
print(f"COMPARING {COLORS.GREEN}{file1.name} & {file2.name}:{COLORS.END}")
selection_1 = get_selection(file1, args)
selection_2 = get_selection(file2, args)
diffs_found = pretty_print_double(selection_1, selection_2, args)
if args.diff and diffs_found:
print(
f"{COLORS.RED}THE ABOVE DIFFS WERE FOUND IN {file1.name} & {file2.name} ^{COLORS.END}\n"
)
if args.interactive:
code.interact(
banner="Entering interactive shell. You can access the checkpoint contents through the local variable 'selection_1' / 'selection_2'.\nPress Ctrl-D to exit.",
local={
"selection_1": selection_1,
"selection_2": selection_2,
"torch": torch,
},
)
def main():
parser = ArgumentParser()
parser.add_argument(
"dir",
type=str,
help="The checkpoint dir to inspect. Must be either: \
- a directory containing pickle binaries saved with 'torch.save' ending in .pt or .ckpt \
- a single path to a .pt or .ckpt file \
- two comma separated directories - in which case the script will *compare* the two checkpoints",
)
parser.add_argument(
"--attributes",
nargs="*",
help="Name of one or several attributes to query. To access an attribute within a nested structure, use '/' as separator.",
default=None,
)
parser.add_argument(
"--interactive",
"-i",
action="store_true",
help="Drops into interactive shell after printing the summary.",
)
parser.add_argument(
"--compare",
"-c",
action="store_true",
help="If true, script will compare two directories separated by commas",
)
parser.add_argument(
"--diff", "-d", action="store_true", help="In compare mode, only print diffs"
)
args = parser.parse_args()
if args.compare:
compare(args)
else:
peek(args)
if __name__ == "__main__":
main()