Update README.md
Browse files
README.md
CHANGED
|
@@ -20,3 +20,126 @@ language:
|
|
| 20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 21 |
|
| 22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 21 |
|
| 22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
| 23 |
+
|
| 24 |
+
## 📄 Model Card: `aksw/Bike-name`
|
| 25 |
+
|
| 26 |
+
### 🧠 Model Overview
|
| 27 |
+
|
| 28 |
+
`Bike-name` is a Medium fine-tuned language model designed to **extract biochemical names from scientific text articles**. It is ideal for Information Retrieval systems based on Biohemical Knowledge Extraction.
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
### 🔍 Intended Use
|
| 33 |
+
|
| 34 |
+
* **Input**: Text from a Biochemical PDF file
|
| 35 |
+
* **Output**: A **single list** containing the corresponding biochemical names from the text.
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
### 🧩 Applications
|
| 40 |
+
|
| 41 |
+
* Question Answering systems over Biochemical Datasets
|
| 42 |
+
* Biochemical Knowledge graph exploration tools
|
| 43 |
+
* Extraction of biochemical names from scientific text articles
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
### ⚙️ Model Details
|
| 48 |
+
|
| 49 |
+
* **Base model**: Phi 4 14B (via Unsloth)
|
| 50 |
+
* **Training**: Scientific text articles
|
| 51 |
+
* 418 unique names
|
| 52 |
+
* 143 articles
|
| 53 |
+
* **Target Ontology**: NatUke Benchmarking (https://github.com/AKSW/natuke)
|
| 54 |
+
* **Frameworks**: Unsloth, HuggingFace, Transformers
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
### 📦 Installation
|
| 59 |
+
|
| 60 |
+
Make sure to install `unsloth`, `torch` and CUDA dependencies:
|
| 61 |
+
|
| 62 |
+
```bash
|
| 63 |
+
pip install unsloth torch
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
### 🧪 Example: Inference Code
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from unsloth import FastLanguageModel
|
| 72 |
+
import torch
|
| 73 |
+
|
| 74 |
+
class SPARQLQueryGenerator:
|
| 75 |
+
def __init__(self, model_name: str, max_seq_length: int = 32768, load_in_4bit: bool = True):
|
| 76 |
+
self.model, self.tokenizer = FastLanguageModel.from_pretrained(
|
| 77 |
+
model_name=model_name,
|
| 78 |
+
max_seq_length=max_seq_length,
|
| 79 |
+
load_in_4bit=load_in_4bit
|
| 80 |
+
)
|
| 81 |
+
_ = FastLanguageModel.for_inference(self.model)
|
| 82 |
+
|
| 83 |
+
def build_prompt(self, article_text: str) -> list:
|
| 84 |
+
return [
|
| 85 |
+
{"role": "system", "content": (
|
| 86 |
+
"You are a scientist trained in chemistry.\n"
|
| 87 |
+
"You must extract information from scientific papers identifying relevant properties associated with each natural product discussed in the academic publication.\n"
|
| 88 |
+
"For each paper, you have to analyze the content (text) to identify the *Compound name*. It can be more than one compound name.\n"
|
| 89 |
+
"Your output should be a list with the names. Return only the list, without any additional information.\n"
|
| 90 |
+
)},
|
| 91 |
+
{"role": "user", "content": article_text}
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
def generate_query(self, article_text: str, temperature: float = 0.01, max_new_tokens: int = 1024) -> str:
|
| 95 |
+
si = "<|im_start|>assistant<|im_sep|>"
|
| 96 |
+
sf = "<|im_end|>"
|
| 97 |
+
messages = self.build_prompt(article_text)
|
| 98 |
+
inputs = self.tokenizer.apply_chat_template(
|
| 99 |
+
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
| 100 |
+
).to("cuda")
|
| 101 |
+
outputs = self.model.generate(inputs, max_new_tokens=max_new_tokens, use_cache=True, temperature=temperature, min_p=0.1)
|
| 102 |
+
decoded = self.tokenizer.batch_decode(outputs)[0]
|
| 103 |
+
parsed = decoded[decoded.find(si):].replace(si, "").replace(sf, "")
|
| 104 |
+
try:
|
| 105 |
+
l = eval(parsed)
|
| 106 |
+
except:
|
| 107 |
+
l = parsed
|
| 108 |
+
print('Your output is not a list, you will need one more preprocessing step.')
|
| 109 |
+
|
| 110 |
+
return l
|
| 111 |
+
|
| 112 |
+
# --- Using the model ---
|
| 113 |
+
if __name__ == "__main__":
|
| 114 |
+
generator = SPARQLQueryGenerator(model_name="aksw/Bike-name")
|
| 115 |
+
text = "Title, Abstract, Introduction, Background, Method, Results, Conclusion, References."
|
| 116 |
+
list_names = generator.generate_query(text)
|
| 117 |
+
print(list_names)
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
---
|
| 121 |
+
|
| 122 |
+
### 🧪 Evaluation
|
| 123 |
+
|
| 124 |
+
The model was evaluated using Hits@k on the test sets of the NatUKE Benchmark (do Carmo et al. 2023)
|
| 125 |
+
|
| 126 |
+
---
|
| 127 |
+
|
| 128 |
+
Do Carmo, Paulo Viviurka, et al. "NatUKE: A Benchmark for Natural Product Knowledge Extraction from Academic Literature." 2023 IEEE 17th International Conference on Semantic Computing (ICSC). IEEE, 2023.
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
### 📚 Citation
|
| 132 |
+
|
| 133 |
+
If you use this model in your work, please cite it as:
|
| 134 |
+
|
| 135 |
+
```
|
| 136 |
+
@inproceedings{ref:doCarmo2025,
|
| 137 |
+
title={Improving Natural Product Knowledge Extraction from Academic Literature with Enhanced PDF Text Extraction and Large Language Models},
|
| 138 |
+
author={Viviurka do Carmo, Paulo and Silva G{\^o}lo, Marcos Paulo and Gwozdz, Jonas and Marx, Edgard and Marcondes Marcacini, Ricardo},
|
| 139 |
+
booktitle={Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing},
|
| 140 |
+
pages={980--987},
|
| 141 |
+
year={2025}
|
| 142 |
+
}
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
|