|
import torch |
|
import torch.nn as nn |
|
import functools |
|
from torch.autograd import Variable |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
def weights_init(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('Conv') != -1: |
|
m.weight.data.normal_(0.0, 0.02) |
|
elif classname.find('BatchNorm2d') != -1: |
|
m.weight.data.normal_(1.0, 0.02) |
|
m.bias.data.fill_(0) |
|
|
|
def get_norm_layer(norm_type='instance'): |
|
if norm_type == 'batch': |
|
norm_layer = functools.partial(nn.BatchNorm2d, affine=True) |
|
elif norm_type == 'instance': |
|
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) |
|
else: |
|
raise NotImplementedError('normalization layer [%s] is not found' % norm_type) |
|
return norm_layer |
|
|
|
def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, |
|
n_blocks_local=3, norm='instance', gpu_ids=[]): |
|
norm_layer = get_norm_layer(norm_type=norm) |
|
if netG == 'global': |
|
netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) |
|
elif netG == 'local': |
|
netG = LocalEnhancer(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, |
|
n_local_enhancers, n_blocks_local, norm_layer) |
|
elif netG == 'encoder': |
|
netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer) |
|
else: |
|
raise('generator not implemented!') |
|
print(netG) |
|
if len(gpu_ids) > 0: |
|
assert(torch.cuda.is_available()) |
|
netG.cuda(gpu_ids[0]) |
|
netG.apply(weights_init) |
|
return netG |
|
|
|
def define_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[]): |
|
norm_layer = get_norm_layer(norm_type=norm) |
|
netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat) |
|
print(netD) |
|
if len(gpu_ids) > 0: |
|
assert(torch.cuda.is_available()) |
|
netD.cuda(gpu_ids[0]) |
|
netD.apply(weights_init) |
|
return netD |
|
|
|
def print_network(net): |
|
if isinstance(net, list): |
|
net = net[0] |
|
num_params = 0 |
|
for param in net.parameters(): |
|
num_params += param.numel() |
|
print(net) |
|
print('Total number of parameters: %d' % num_params) |
|
|
|
|
|
|
|
|
|
class GANLoss(nn.Module): |
|
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0, |
|
tensor=torch.FloatTensor): |
|
super(GANLoss, self).__init__() |
|
self.real_label = target_real_label |
|
self.fake_label = target_fake_label |
|
self.real_label_var = None |
|
self.fake_label_var = None |
|
self.Tensor = tensor |
|
if use_lsgan: |
|
self.loss = nn.MSELoss() |
|
else: |
|
self.loss = nn.BCELoss() |
|
|
|
def get_target_tensor(self, input, target_is_real): |
|
target_tensor = None |
|
if target_is_real: |
|
create_label = ((self.real_label_var is None) or |
|
(self.real_label_var.numel() != input.numel())) |
|
if create_label: |
|
real_tensor = self.Tensor(input.size()).fill_(self.real_label) |
|
self.real_label_var = Variable(real_tensor, requires_grad=False) |
|
target_tensor = self.real_label_var |
|
else: |
|
create_label = ((self.fake_label_var is None) or |
|
(self.fake_label_var.numel() != input.numel())) |
|
if create_label: |
|
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label) |
|
self.fake_label_var = Variable(fake_tensor, requires_grad=False) |
|
target_tensor = self.fake_label_var |
|
return target_tensor |
|
|
|
def __call__(self, input, target_is_real): |
|
if isinstance(input[0], list): |
|
loss = 0 |
|
for input_i in input: |
|
pred = input_i[-1] |
|
target_tensor = self.get_target_tensor(pred, target_is_real) |
|
loss += self.loss(pred, target_tensor) |
|
return loss |
|
else: |
|
target_tensor = self.get_target_tensor(input[-1], target_is_real) |
|
return self.loss(input[-1], target_tensor) |
|
|
|
class VGGLoss(nn.Module): |
|
def __init__(self, gpu_ids): |
|
super(VGGLoss, self).__init__() |
|
self.vgg = Vgg19().cuda() |
|
self.criterion = nn.L1Loss() |
|
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] |
|
|
|
def forward(self, x, y): |
|
x_vgg, y_vgg = self.vgg(x), self.vgg(y) |
|
loss = 0 |
|
for i in range(len(x_vgg)): |
|
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) |
|
return loss |
|
|
|
|
|
|
|
|
|
class LocalEnhancer(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9, |
|
n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type='reflect'): |
|
super(LocalEnhancer, self).__init__() |
|
self.n_local_enhancers = n_local_enhancers |
|
|
|
|
|
ngf_global = ngf * (2**n_local_enhancers) |
|
model_global = GlobalGenerator(input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer).model |
|
model_global = [model_global[i] for i in range(len(model_global)-3)] |
|
self.model = nn.Sequential(*model_global) |
|
|
|
|
|
for n in range(1, n_local_enhancers+1): |
|
|
|
ngf_global = ngf * (2**(n_local_enhancers-n)) |
|
model_downsample = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), |
|
norm_layer(ngf_global), nn.ReLU(True), |
|
nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), |
|
norm_layer(ngf_global * 2), nn.ReLU(True)] |
|
|
|
model_upsample = [] |
|
for i in range(n_blocks_local): |
|
model_upsample += [ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)] |
|
|
|
|
|
model_upsample += [nn.ConvTranspose2d(ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
norm_layer(ngf_global), nn.ReLU(True)] |
|
|
|
|
|
if n == n_local_enhancers: |
|
model_upsample += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] |
|
|
|
setattr(self, 'model'+str(n)+'_1', nn.Sequential(*model_downsample)) |
|
setattr(self, 'model'+str(n)+'_2', nn.Sequential(*model_upsample)) |
|
|
|
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) |
|
|
|
def forward(self, input): |
|
|
|
input_downsampled = [input] |
|
for i in range(self.n_local_enhancers): |
|
input_downsampled.append(self.downsample(input_downsampled[-1])) |
|
|
|
|
|
output_prev = self.model(input_downsampled[-1]) |
|
|
|
for n_local_enhancers in range(1, self.n_local_enhancers+1): |
|
model_downsample = getattr(self, 'model'+str(n_local_enhancers)+'_1') |
|
model_upsample = getattr(self, 'model'+str(n_local_enhancers)+'_2') |
|
input_i = input_downsampled[self.n_local_enhancers-n_local_enhancers] |
|
output_prev = model_upsample(model_downsample(input_i) + output_prev) |
|
return output_prev |
|
|
|
class GlobalGenerator(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, |
|
padding_type='reflect'): |
|
assert(n_blocks >= 0) |
|
super(GlobalGenerator, self).__init__() |
|
activation = nn.ReLU(True) |
|
|
|
model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation] |
|
|
|
for i in range(n_downsampling): |
|
mult = 2**i |
|
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), |
|
norm_layer(ngf * mult * 2), activation] |
|
|
|
|
|
mult = 2**n_downsampling |
|
for i in range(n_blocks): |
|
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)] |
|
|
|
|
|
for i in range(n_downsampling): |
|
mult = 2**(n_downsampling - i) |
|
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), |
|
norm_layer(int(ngf * mult / 2)), activation] |
|
model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] |
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False): |
|
super(ResnetBlock, self).__init__() |
|
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout) |
|
|
|
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): |
|
conv_block = [] |
|
p = 0 |
|
if padding_type == 'reflect': |
|
conv_block += [nn.ReflectionPad2d(1)] |
|
elif padding_type == 'replicate': |
|
conv_block += [nn.ReplicationPad2d(1)] |
|
elif padding_type == 'zero': |
|
p = 1 |
|
else: |
|
raise NotImplementedError('padding [%s] is not implemented' % padding_type) |
|
|
|
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), |
|
norm_layer(dim), |
|
activation] |
|
if use_dropout: |
|
conv_block += [nn.Dropout(0.5)] |
|
|
|
p = 0 |
|
if padding_type == 'reflect': |
|
conv_block += [nn.ReflectionPad2d(1)] |
|
elif padding_type == 'replicate': |
|
conv_block += [nn.ReplicationPad2d(1)] |
|
elif padding_type == 'zero': |
|
p = 1 |
|
else: |
|
raise NotImplementedError('padding [%s] is not implemented' % padding_type) |
|
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), |
|
norm_layer(dim)] |
|
|
|
return nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
out = x + self.conv_block(x) |
|
return out |
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d): |
|
super(Encoder, self).__init__() |
|
self.output_nc = output_nc |
|
|
|
model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), |
|
norm_layer(ngf), nn.ReLU(True)] |
|
|
|
for i in range(n_downsampling): |
|
mult = 2**i |
|
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), |
|
norm_layer(ngf * mult * 2), nn.ReLU(True)] |
|
|
|
|
|
for i in range(n_downsampling): |
|
mult = 2**(n_downsampling - i) |
|
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), |
|
norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] |
|
|
|
model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()] |
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, input, inst): |
|
outputs = self.model(input) |
|
|
|
|
|
outputs_mean = outputs.clone() |
|
inst_list = np.unique(inst.cpu().numpy().astype(int)) |
|
for i in inst_list: |
|
for b in range(input.size()[0]): |
|
indices = (inst[b:b+1] == int(i)).nonzero() |
|
for j in range(self.output_nc): |
|
output_ins = outputs[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] |
|
mean_feat = torch.mean(output_ins).expand_as(output_ins) |
|
outputs_mean[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] = mean_feat |
|
return outputs_mean |
|
|
|
class MultiscaleDiscriminator(nn.Module): |
|
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, |
|
use_sigmoid=False, num_D=3, getIntermFeat=False): |
|
super(MultiscaleDiscriminator, self).__init__() |
|
self.num_D = num_D |
|
self.n_layers = n_layers |
|
self.getIntermFeat = getIntermFeat |
|
|
|
for i in range(num_D): |
|
netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat) |
|
if getIntermFeat: |
|
for j in range(n_layers+2): |
|
setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j))) |
|
else: |
|
setattr(self, 'layer'+str(i), netD.model) |
|
|
|
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) |
|
|
|
def singleD_forward(self, model, input): |
|
if self.getIntermFeat: |
|
result = [input] |
|
for i in range(len(model)): |
|
result.append(model[i](result[-1])) |
|
return result[1:] |
|
else: |
|
return [model(input)] |
|
|
|
def forward(self, input): |
|
num_D = self.num_D |
|
result = [] |
|
input_downsampled = input |
|
for i in range(num_D): |
|
if self.getIntermFeat: |
|
model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)] |
|
else: |
|
model = getattr(self, 'layer'+str(num_D-1-i)) |
|
result.append(self.singleD_forward(model, input_downsampled)) |
|
if i != (num_D-1): |
|
input_downsampled = self.downsample(input_downsampled) |
|
return result |
|
|
|
|
|
class NLayerDiscriminator(nn.Module): |
|
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False): |
|
super(NLayerDiscriminator, self).__init__() |
|
self.getIntermFeat = getIntermFeat |
|
self.n_layers = n_layers |
|
|
|
kw = 4 |
|
padw = int(np.ceil((kw-1.0)/2)) |
|
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]] |
|
|
|
nf = ndf |
|
for n in range(1, n_layers): |
|
nf_prev = nf |
|
nf = min(nf * 2, 512) |
|
sequence += [[ |
|
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), |
|
norm_layer(nf), nn.LeakyReLU(0.2, True) |
|
]] |
|
|
|
nf_prev = nf |
|
nf = min(nf * 2, 512) |
|
sequence += [[ |
|
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), |
|
norm_layer(nf), |
|
nn.LeakyReLU(0.2, True) |
|
]] |
|
|
|
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] |
|
|
|
if use_sigmoid: |
|
sequence += [[nn.Sigmoid()]] |
|
|
|
if getIntermFeat: |
|
for n in range(len(sequence)): |
|
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) |
|
else: |
|
sequence_stream = [] |
|
for n in range(len(sequence)): |
|
sequence_stream += sequence[n] |
|
self.model = nn.Sequential(*sequence_stream) |
|
|
|
def forward(self, input): |
|
if self.getIntermFeat: |
|
res = [input] |
|
for n in range(self.n_layers+2): |
|
model = getattr(self, 'model'+str(n)) |
|
res.append(model(res[-1])) |
|
return res[1:] |
|
else: |
|
return self.model(input) |
|
|
|
from torchvision import models |
|
class Vgg19(torch.nn.Module): |
|
def __init__(self, requires_grad=False): |
|
super(Vgg19, self).__init__() |
|
vgg_pretrained_features = models.vgg19(pretrained=True).features |
|
self.slice1 = torch.nn.Sequential() |
|
self.slice2 = torch.nn.Sequential() |
|
self.slice3 = torch.nn.Sequential() |
|
self.slice4 = torch.nn.Sequential() |
|
self.slice5 = torch.nn.Sequential() |
|
for x in range(2): |
|
self.slice1.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(2, 7): |
|
self.slice2.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(7, 12): |
|
self.slice3.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(12, 21): |
|
self.slice4.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(21, 30): |
|
self.slice5.add_module(str(x), vgg_pretrained_features[x]) |
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h_relu1 = self.slice1(X) |
|
h_relu2 = self.slice2(h_relu1) |
|
h_relu3 = self.slice3(h_relu2) |
|
h_relu4 = self.slice4(h_relu3) |
|
h_relu5 = self.slice5(h_relu4) |
|
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] |
|
return out |
|
|