ajaymin28 commited on
Commit
eb559d4
·
verified ·
1 Parent(s): 1d69bf0

Upload folder using huggingface_hub

Browse files
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lmsys/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/adapter_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "lmsys/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "olora",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 512,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 256,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "o_proj",
25
+ "k_proj",
26
+ "up_proj",
27
+ "down_proj",
28
+ "fc2",
29
+ "v_proj",
30
+ "gate_proj",
31
+ "fc1"
32
+ ],
33
+ "task_type": "CAUSAL_LM",
34
+ "use_dora": false,
35
+ "use_rslora": false
36
+ }
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c1ae30a96e8cc5af46235c15bcfc26dab6bb464278a709e3330bc53120bb1fe
3
+ size 1279324400
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "lmsys/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "image_aspect_ratio": "pad",
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_hidden_size": 1024,
15
+ "mm_image_tower": "LanguageBind/LanguageBind_Image",
16
+ "mm_projector_lr": 2e-05,
17
+ "mm_projector_type": "mlp2x_gelu",
18
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
19
+ "mm_use_im_patch_token": false,
20
+ "mm_use_im_start_end": false,
21
+ "mm_video_tower": "LanguageBind/LanguageBind_Video_merge",
22
+ "mm_vision_select_feature": "patch",
23
+ "mm_vision_select_layer": -2,
24
+ "model_type": "llava",
25
+ "num_attention_heads": 32,
26
+ "num_hidden_layers": 32,
27
+ "num_key_value_heads": 32,
28
+ "pad_token_id": 0,
29
+ "pretraining_tp": 1,
30
+ "rms_norm_eps": 1e-05,
31
+ "rope_scaling": null,
32
+ "tie_word_embeddings": false,
33
+ "tokenizer_model_max_length": 3072,
34
+ "tokenizer_padding_side": "right",
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.31.0",
37
+ "use_cache": true,
38
+ "use_mm_proj": true,
39
+ "vocab_size": 32000
40
+ }
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4b1820d7ea15c4c94a3fe1bb86265fffdecaeed359e2dfd8e4326bbc00c8b9e
3
+ size 41961648
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/runs/Oct31_18-31-31_evc33/events.out.tfevents.1730414285.evc33 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc244e354a3c926991ece7447d392b636bccc4946abab2ab097d8a18c73543f3
3
+ size 74175
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 2048,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
[lora]video_llava_AG_annotations_v5_3_p06_e01/videollava-7b-lora/trainer_state.json ADDED
@@ -0,0 +1,2653 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "global_step": 438,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.4285714285714285e-05,
13
+ "loss": 0.7209,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 2.857142857142857e-05,
19
+ "loss": 0.8667,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 4.2857142857142856e-05,
25
+ "loss": 0.506,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 5.714285714285714e-05,
31
+ "loss": 0.3896,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 7.142857142857143e-05,
37
+ "loss": 0.4747,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 8.571428571428571e-05,
43
+ "loss": 0.3938,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.02,
48
+ "learning_rate": 0.0001,
49
+ "loss": 0.2981,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.02,
54
+ "learning_rate": 0.00011428571428571428,
55
+ "loss": 0.249,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.02,
60
+ "learning_rate": 0.00012857142857142858,
61
+ "loss": 0.3211,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 0.00014285714285714287,
67
+ "loss": 0.2655,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.03,
72
+ "learning_rate": 0.00015714285714285716,
73
+ "loss": 0.4355,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.03,
78
+ "learning_rate": 0.00017142857142857143,
79
+ "loss": 0.7463,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.03,
84
+ "learning_rate": 0.00018571428571428572,
85
+ "loss": 0.8763,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.03,
90
+ "learning_rate": 0.0002,
91
+ "loss": 0.9784,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.03,
96
+ "learning_rate": 0.00019999725503981394,
97
+ "loss": 0.7434,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.04,
102
+ "learning_rate": 0.0001999890203099519,
103
+ "loss": 3.2561,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.04,
108
+ "learning_rate": 0.00019997529626249397,
109
+ "loss": 3.5603,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.04,
114
+ "learning_rate": 0.00019995608365087946,
115
+ "loss": 1.4961,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.04,
120
+ "learning_rate": 0.00019993138352986537,
121
+ "loss": 0.8335,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.05,
126
+ "learning_rate": 0.0001999011972554688,
127
+ "loss": 0.4338,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.05,
132
+ "learning_rate": 0.00019986552648489208,
133
+ "loss": 0.4623,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.05,
138
+ "learning_rate": 0.00019982437317643217,
139
+ "loss": 0.4217,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.05,
144
+ "learning_rate": 0.00019977773958937287,
145
+ "loss": 0.2969,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.05,
150
+ "learning_rate": 0.00019972562828386102,
151
+ "loss": 0.2847,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.06,
156
+ "learning_rate": 0.00019966804212076582,
157
+ "loss": 0.228,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.06,
162
+ "learning_rate": 0.0001996049842615217,
163
+ "loss": 0.2418,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.06,
168
+ "learning_rate": 0.00019953645816795499,
169
+ "loss": 0.2565,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.06,
174
+ "learning_rate": 0.00019946246760209362,
175
+ "loss": 0.2119,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.07,
180
+ "learning_rate": 0.00019938301662596075,
181
+ "loss": 0.2153,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.07,
186
+ "learning_rate": 0.00019929810960135172,
187
+ "loss": 0.2335,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.07,
192
+ "learning_rate": 0.00019920775118959454,
193
+ "loss": 0.2112,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.07,
198
+ "learning_rate": 0.0001991119463512941,
199
+ "loss": 0.2171,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.08,
204
+ "learning_rate": 0.0001990107003460597,
205
+ "loss": 0.2205,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.08,
210
+ "learning_rate": 0.0001989040187322164,
211
+ "loss": 0.2049,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.08,
216
+ "learning_rate": 0.00019879190736649992,
217
+ "loss": 0.2004,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.08,
222
+ "learning_rate": 0.00019867437240373489,
223
+ "loss": 0.1626,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.08,
228
+ "learning_rate": 0.00019855142029649722,
229
+ "loss": 0.1924,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.09,
234
+ "learning_rate": 0.00019842305779475968,
235
+ "loss": 0.1526,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.09,
240
+ "learning_rate": 0.00019828929194552143,
241
+ "loss": 0.194,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.09,
246
+ "learning_rate": 0.00019815013009242104,
247
+ "loss": 0.1473,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.09,
252
+ "learning_rate": 0.0001980055798753334,
253
+ "loss": 0.1822,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.1,
258
+ "learning_rate": 0.0001978556492299504,
259
+ "loss": 0.175,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.1,
264
+ "learning_rate": 0.00019770034638734506,
265
+ "loss": 0.1649,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.1,
270
+ "learning_rate": 0.00019753967987351978,
271
+ "loss": 0.1791,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.1,
276
+ "learning_rate": 0.0001973736585089382,
277
+ "loss": 0.1463,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.11,
282
+ "learning_rate": 0.0001972022914080411,
283
+ "loss": 0.1285,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.11,
288
+ "learning_rate": 0.0001970255879787458,
289
+ "loss": 0.1494,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.11,
294
+ "learning_rate": 0.0001968435579219299,
295
+ "loss": 0.1376,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.11,
300
+ "learning_rate": 0.0001966562112308985,
301
+ "loss": 0.1373,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.11,
306
+ "learning_rate": 0.00019646355819083589,
307
+ "loss": 0.1466,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.12,
312
+ "learning_rate": 0.00019626560937824046,
313
+ "loss": 0.1405,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.12,
318
+ "learning_rate": 0.00019606237566034443,
319
+ "loss": 0.1323,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.12,
324
+ "learning_rate": 0.00019585386819451708,
325
+ "loss": 0.1576,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.12,
330
+ "learning_rate": 0.00019564009842765225,
331
+ "loss": 0.1437,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.13,
336
+ "learning_rate": 0.00019542107809553992,
337
+ "loss": 0.1272,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.13,
342
+ "learning_rate": 0.00019519681922222195,
343
+ "loss": 0.1403,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.13,
348
+ "learning_rate": 0.00019496733411933188,
349
+ "loss": 0.1387,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.13,
354
+ "learning_rate": 0.00019473263538541914,
355
+ "loss": 0.1344,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.13,
360
+ "learning_rate": 0.00019449273590525735,
361
+ "loss": 0.1439,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.14,
366
+ "learning_rate": 0.0001942476488491369,
367
+ "loss": 0.1383,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.14,
372
+ "learning_rate": 0.000193997387672142,
373
+ "loss": 0.123,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.14,
378
+ "learning_rate": 0.0001937419661134121,
379
+ "loss": 0.1123,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.14,
384
+ "learning_rate": 0.0001934813981953873,
385
+ "loss": 0.127,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.15,
390
+ "learning_rate": 0.0001932156982230388,
391
+ "loss": 0.1405,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.15,
396
+ "learning_rate": 0.00019294488078308355,
397
+ "loss": 0.1485,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.15,
402
+ "learning_rate": 0.00019266896074318334,
403
+ "loss": 0.1267,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.15,
408
+ "learning_rate": 0.0001923879532511287,
409
+ "loss": 0.1597,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.16,
414
+ "learning_rate": 0.0001921018737340071,
415
+ "loss": 0.1132,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.16,
420
+ "learning_rate": 0.00019181073789735628,
421
+ "loss": 0.1242,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.16,
426
+ "learning_rate": 0.00019151456172430183,
427
+ "loss": 0.1237,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.16,
432
+ "learning_rate": 0.0001912133614746799,
433
+ "loss": 0.1421,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.16,
438
+ "learning_rate": 0.0001909071536841442,
439
+ "loss": 0.1266,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.17,
444
+ "learning_rate": 0.0001905959551632587,
445
+ "loss": 0.1074,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.17,
450
+ "learning_rate": 0.00019027978299657436,
451
+ "loss": 0.1093,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.17,
456
+ "learning_rate": 0.0001899586545416914,
457
+ "loss": 0.1253,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.17,
462
+ "learning_rate": 0.00018963258742830626,
463
+ "loss": 0.1106,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.18,
468
+ "learning_rate": 0.00018930159955724387,
469
+ "loss": 0.1234,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.18,
474
+ "learning_rate": 0.00018896570909947475,
475
+ "loss": 0.1134,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.18,
480
+ "learning_rate": 0.00018862493449511755,
481
+ "loss": 0.1314,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.18,
486
+ "learning_rate": 0.00018827929445242676,
487
+ "loss": 0.115,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.18,
492
+ "learning_rate": 0.00018792880794676545,
493
+ "loss": 0.1181,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.19,
498
+ "learning_rate": 0.0001875734942195637,
499
+ "loss": 0.1012,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.19,
504
+ "learning_rate": 0.0001872133727772622,
505
+ "loss": 0.1109,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.19,
510
+ "learning_rate": 0.00018684846339024142,
511
+ "loss": 0.1025,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.19,
516
+ "learning_rate": 0.0001864787860917361,
517
+ "loss": 0.1073,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.2,
522
+ "learning_rate": 0.00018610436117673555,
523
+ "loss": 0.1112,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.2,
528
+ "learning_rate": 0.0001857252092008695,
529
+ "loss": 0.1577,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.2,
534
+ "learning_rate": 0.0001853413509792795,
535
+ "loss": 0.1405,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.2,
540
+ "learning_rate": 0.00018495280758547622,
541
+ "loss": 0.1297,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.21,
546
+ "learning_rate": 0.0001845596003501826,
547
+ "loss": 0.1216,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.21,
552
+ "learning_rate": 0.00018416175086016282,
553
+ "loss": 0.1201,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.21,
558
+ "learning_rate": 0.00018375928095703704,
559
+ "loss": 0.1281,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.21,
564
+ "learning_rate": 0.0001833522127360824,
565
+ "loss": 0.1351,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.21,
570
+ "learning_rate": 0.0001829405685450202,
571
+ "loss": 0.1288,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.22,
576
+ "learning_rate": 0.00018252437098278867,
577
+ "loss": 0.1005,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.22,
582
+ "learning_rate": 0.0001821036428983026,
583
+ "loss": 0.1115,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.22,
588
+ "learning_rate": 0.00018167840738919882,
589
+ "loss": 0.1147,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.22,
594
+ "learning_rate": 0.00018124868780056814,
595
+ "loss": 0.1152,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.23,
600
+ "learning_rate": 0.00018081450772367382,
601
+ "loss": 0.1348,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.23,
606
+ "learning_rate": 0.00018037589099465637,
607
+ "loss": 0.121,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.23,
612
+ "learning_rate": 0.0001799328616932249,
613
+ "loss": 0.1206,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.23,
618
+ "learning_rate": 0.00017948544414133534,
619
+ "loss": 0.1388,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.24,
624
+ "learning_rate": 0.00017903366290185498,
625
+ "loss": 0.1274,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.24,
630
+ "learning_rate": 0.00017857754277721415,
631
+ "loss": 0.1223,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.24,
636
+ "learning_rate": 0.00017811710880804449,
637
+ "loss": 0.114,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.24,
642
+ "learning_rate": 0.00017765238627180424,
643
+ "loss": 0.1038,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.24,
648
+ "learning_rate": 0.00017718340068139066,
649
+ "loss": 0.1264,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.25,
654
+ "learning_rate": 0.00017671017778373913,
655
+ "loss": 0.1104,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.25,
660
+ "learning_rate": 0.00017623274355841,
661
+ "loss": 0.1187,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.25,
666
+ "learning_rate": 0.00017575112421616202,
667
+ "loss": 0.1177,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.25,
672
+ "learning_rate": 0.0001752653461975136,
673
+ "loss": 0.1207,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.26,
678
+ "learning_rate": 0.0001747754361712911,
679
+ "loss": 0.1184,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.26,
684
+ "learning_rate": 0.0001742814210331649,
685
+ "loss": 0.1223,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.26,
690
+ "learning_rate": 0.00017378332790417273,
691
+ "loss": 0.096,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.26,
696
+ "learning_rate": 0.0001732811841292307,
697
+ "loss": 0.1113,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.26,
702
+ "learning_rate": 0.00017277501727563224,
703
+ "loss": 0.1014,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.27,
708
+ "learning_rate": 0.00017226485513153456,
709
+ "loss": 0.1048,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.27,
714
+ "learning_rate": 0.00017175072570443312,
715
+ "loss": 0.1026,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.27,
720
+ "learning_rate": 0.0001712326572196241,
721
+ "loss": 0.1082,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.27,
726
+ "learning_rate": 0.00017071067811865476,
727
+ "loss": 0.1164,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.28,
732
+ "learning_rate": 0.00017018481705776211,
733
+ "loss": 0.114,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.28,
738
+ "learning_rate": 0.00016965510290629972,
739
+ "loss": 0.1052,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.28,
744
+ "learning_rate": 0.00016912156474515263,
745
+ "loss": 0.1242,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.28,
750
+ "learning_rate": 0.00016858423186514107,
751
+ "loss": 0.1107,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.29,
756
+ "learning_rate": 0.00016804313376541226,
757
+ "loss": 0.1016,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.29,
762
+ "learning_rate": 0.00016749830015182107,
763
+ "loss": 0.101,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.29,
768
+ "learning_rate": 0.00016694976093529896,
769
+ "loss": 0.0967,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.29,
774
+ "learning_rate": 0.00016639754623021225,
775
+ "loss": 0.1431,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.29,
780
+ "learning_rate": 0.0001658416863527084,
781
+ "loss": 0.1258,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.3,
786
+ "learning_rate": 0.00016528221181905217,
787
+ "loss": 0.1038,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.3,
792
+ "learning_rate": 0.0001647191533439499,
793
+ "loss": 0.111,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.3,
798
+ "learning_rate": 0.00016415254183886355,
799
+ "loss": 0.111,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.3,
804
+ "learning_rate": 0.00016358240841031352,
805
+ "loss": 0.1324,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.31,
810
+ "learning_rate": 0.00016300878435817113,
811
+ "loss": 0.1001,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.31,
816
+ "learning_rate": 0.00016243170117394,
817
+ "loss": 0.1239,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.31,
822
+ "learning_rate": 0.00016185119053902747,
823
+ "loss": 0.1259,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.31,
828
+ "learning_rate": 0.00016126728432300515,
829
+ "loss": 0.0969,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.32,
834
+ "learning_rate": 0.00016068001458185936,
835
+ "loss": 0.1048,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.32,
840
+ "learning_rate": 0.0001600894135562312,
841
+ "loss": 0.0778,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.32,
846
+ "learning_rate": 0.00015949551366964675,
847
+ "loss": 0.0951,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.32,
852
+ "learning_rate": 0.00015889834752673684,
853
+ "loss": 0.0998,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.32,
858
+ "learning_rate": 0.0001582979479114472,
859
+ "loss": 0.0972,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.33,
864
+ "learning_rate": 0.00015769434778523868,
865
+ "loss": 0.1081,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.33,
870
+ "learning_rate": 0.00015708758028527752,
871
+ "loss": 0.1073,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.33,
876
+ "learning_rate": 0.00015647767872261633,
877
+ "loss": 0.1196,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.33,
882
+ "learning_rate": 0.00015586467658036524,
883
+ "loss": 0.0959,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.34,
888
+ "learning_rate": 0.00015524860751185376,
889
+ "loss": 0.1212,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.34,
894
+ "learning_rate": 0.00015462950533878317,
895
+ "loss": 0.0942,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.34,
900
+ "learning_rate": 0.00015400740404936979,
901
+ "loss": 0.1105,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.34,
906
+ "learning_rate": 0.0001533823377964791,
907
+ "loss": 0.1038,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.34,
912
+ "learning_rate": 0.00015275434089575055,
913
+ "loss": 0.1143,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.35,
918
+ "learning_rate": 0.000152123447823714,
919
+ "loss": 0.0865,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.35,
924
+ "learning_rate": 0.00015148969321589673,
925
+ "loss": 0.1127,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.35,
930
+ "learning_rate": 0.00015085311186492206,
931
+ "loss": 0.1139,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.35,
936
+ "learning_rate": 0.00015021373871859924,
937
+ "loss": 0.1039,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.36,
942
+ "learning_rate": 0.00014957160887800494,
943
+ "loss": 0.1024,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.36,
948
+ "learning_rate": 0.00014892675759555605,
949
+ "loss": 0.1214,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.36,
954
+ "learning_rate": 0.00014827922027307451,
955
+ "loss": 0.1071,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.36,
960
+ "learning_rate": 0.00014762903245984368,
961
+ "loss": 0.1218,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.37,
966
+ "learning_rate": 0.0001469762298506568,
967
+ "loss": 0.1032,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.37,
972
+ "learning_rate": 0.0001463208482838573,
973
+ "loss": 0.1081,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.37,
978
+ "learning_rate": 0.0001456629237393713,
979
+ "loss": 0.1004,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.37,
984
+ "learning_rate": 0.00014500249233673248,
985
+ "loss": 0.1242,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.37,
990
+ "learning_rate": 0.00014433959033309887,
991
+ "loss": 0.1104,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.38,
996
+ "learning_rate": 0.00014367425412126265,
997
+ "loss": 0.0834,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.38,
1002
+ "learning_rate": 0.00014300652022765207,
1003
+ "loss": 0.0881,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.38,
1008
+ "learning_rate": 0.00014233642531032614,
1009
+ "loss": 0.1134,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.38,
1014
+ "learning_rate": 0.00014166400615696231,
1015
+ "loss": 0.1148,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.39,
1020
+ "learning_rate": 0.0001409892996828366,
1021
+ "loss": 0.1084,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.39,
1026
+ "learning_rate": 0.00014031234292879725,
1027
+ "loss": 0.1046,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.39,
1032
+ "learning_rate": 0.00013963317305923094,
1033
+ "loss": 0.1003,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.39,
1038
+ "learning_rate": 0.00013895182736002276,
1039
+ "loss": 0.1075,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.39,
1044
+ "learning_rate": 0.000138268343236509,
1045
+ "loss": 0.0996,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.4,
1050
+ "learning_rate": 0.00013758275821142382,
1051
+ "loss": 0.1079,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.4,
1056
+ "learning_rate": 0.00013689510992283922,
1057
+ "loss": 0.1117,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.4,
1062
+ "learning_rate": 0.00013620543612209861,
1063
+ "loss": 0.1017,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.4,
1068
+ "learning_rate": 0.00013551377467174456,
1069
+ "loss": 0.091,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.41,
1074
+ "learning_rate": 0.0001348201635434399,
1075
+ "loss": 0.0973,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.41,
1080
+ "learning_rate": 0.00013412464081588322,
1081
+ "loss": 0.1054,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.41,
1086
+ "learning_rate": 0.0001334272446727185,
1087
+ "loss": 0.1249,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.41,
1092
+ "learning_rate": 0.00013272801340043867,
1093
+ "loss": 0.1265,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.42,
1098
+ "learning_rate": 0.00013202698538628376,
1099
+ "loss": 0.094,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.42,
1104
+ "learning_rate": 0.0001313241991161336,
1105
+ "loss": 0.0888,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.42,
1110
+ "learning_rate": 0.00013061969317239468,
1111
+ "loss": 0.1159,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.42,
1116
+ "learning_rate": 0.00012991350623188245,
1117
+ "loss": 0.0966,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.42,
1122
+ "learning_rate": 0.00012920567706369758,
1123
+ "loss": 0.1009,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.43,
1128
+ "learning_rate": 0.0001284962445270978,
1129
+ "loss": 0.109,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.43,
1134
+ "learning_rate": 0.0001277852475693644,
1135
+ "loss": 0.0982,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.43,
1140
+ "learning_rate": 0.00012707272522366426,
1141
+ "loss": 0.1049,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.43,
1146
+ "learning_rate": 0.00012635871660690676,
1147
+ "loss": 0.0988,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.44,
1152
+ "learning_rate": 0.00012564326091759646,
1153
+ "loss": 0.098,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.44,
1158
+ "learning_rate": 0.00012492639743368097,
1159
+ "loss": 0.1115,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.44,
1164
+ "learning_rate": 0.0001242081655103947,
1165
+ "loss": 0.1144,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.44,
1170
+ "learning_rate": 0.00012348860457809838,
1171
+ "loss": 0.1076,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.45,
1176
+ "learning_rate": 0.0001227677541401142,
1177
+ "loss": 0.0995,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.45,
1182
+ "learning_rate": 0.00012204565377055718,
1183
+ "loss": 0.0962,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.45,
1188
+ "learning_rate": 0.0001213223431121627,
1189
+ "loss": 0.1034,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.45,
1194
+ "learning_rate": 0.00012059786187410984,
1195
+ "loss": 0.1093,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.45,
1200
+ "learning_rate": 0.00011987224982984176,
1201
+ "loss": 0.0854,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.46,
1206
+ "learning_rate": 0.00011914554681488188,
1207
+ "loss": 0.1151,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.46,
1212
+ "learning_rate": 0.00011841779272464703,
1213
+ "loss": 0.1139,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.46,
1218
+ "learning_rate": 0.0001176890275122573,
1219
+ "loss": 0.0932,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.46,
1224
+ "learning_rate": 0.00011695929118634256,
1225
+ "loss": 0.0907,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.47,
1230
+ "learning_rate": 0.00011622862380884601,
1231
+ "loss": 0.1049,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.47,
1236
+ "learning_rate": 0.00011549706549282486,
1237
+ "loss": 0.0993,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.47,
1242
+ "learning_rate": 0.00011476465640024814,
1243
+ "loss": 0.106,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.47,
1248
+ "learning_rate": 0.00011403143673979183,
1249
+ "loss": 0.107,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.47,
1254
+ "learning_rate": 0.00011329744676463143,
1255
+ "loss": 0.115,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.48,
1260
+ "learning_rate": 0.00011256272677023214,
1261
+ "loss": 0.1032,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.48,
1266
+ "learning_rate": 0.00011182731709213659,
1267
+ "loss": 0.1083,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 0.48,
1272
+ "learning_rate": 0.00011109125810375054,
1273
+ "loss": 0.121,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 0.48,
1278
+ "learning_rate": 0.0001103545902141263,
1279
+ "loss": 0.092,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 0.49,
1284
+ "learning_rate": 0.00010961735386574448,
1285
+ "loss": 0.0907,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 0.49,
1290
+ "learning_rate": 0.00010887958953229349,
1291
+ "loss": 0.1129,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 0.49,
1296
+ "learning_rate": 0.00010814133771644783,
1297
+ "loss": 0.0983,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 0.49,
1302
+ "learning_rate": 0.00010740263894764429,
1303
+ "loss": 0.096,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 0.5,
1308
+ "learning_rate": 0.00010666353377985711,
1309
+ "loss": 0.0883,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 0.5,
1314
+ "learning_rate": 0.00010592406278937144,
1315
+ "loss": 0.1229,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 0.5,
1320
+ "learning_rate": 0.00010518426657255585,
1321
+ "loss": 0.1026,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 0.5,
1326
+ "learning_rate": 0.00010444418574363353,
1327
+ "loss": 0.0974,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 0.5,
1332
+ "learning_rate": 0.0001037038609324527,
1333
+ "loss": 0.0936,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 0.51,
1338
+ "learning_rate": 0.00010296333278225599,
1339
+ "loss": 0.0992,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 0.51,
1344
+ "learning_rate": 0.00010222264194744918,
1345
+ "loss": 0.1006,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 0.51,
1350
+ "learning_rate": 0.00010148182909136928,
1351
+ "loss": 0.1044,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 0.51,
1356
+ "learning_rate": 0.00010074093488405223,
1357
+ "loss": 0.0933,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 0.52,
1362
+ "learning_rate": 0.0001,
1363
+ "loss": 0.0977,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 0.52,
1368
+ "learning_rate": 9.92590651159478e-05,
1369
+ "loss": 0.0926,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 0.52,
1374
+ "learning_rate": 9.851817090863073e-05,
1375
+ "loss": 0.0891,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 0.52,
1380
+ "learning_rate": 9.777735805255087e-05,
1381
+ "loss": 0.1235,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 0.53,
1386
+ "learning_rate": 9.703666721774402e-05,
1387
+ "loss": 0.0905,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 0.53,
1392
+ "learning_rate": 9.629613906754731e-05,
1393
+ "loss": 0.0944,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 0.53,
1398
+ "learning_rate": 9.555581425636648e-05,
1399
+ "loss": 0.1,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 0.53,
1404
+ "learning_rate": 9.481573342744419e-05,
1405
+ "loss": 0.1015,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 0.53,
1410
+ "learning_rate": 9.407593721062859e-05,
1411
+ "loss": 0.0969,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 0.54,
1416
+ "learning_rate": 9.33364662201429e-05,
1417
+ "loss": 0.1012,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 0.54,
1422
+ "learning_rate": 9.259736105235572e-05,
1423
+ "loss": 0.099,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 0.54,
1428
+ "learning_rate": 9.18586622835522e-05,
1429
+ "loss": 0.1153,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 0.54,
1434
+ "learning_rate": 9.112041046770653e-05,
1435
+ "loss": 0.0978,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 0.55,
1440
+ "learning_rate": 9.038264613425556e-05,
1441
+ "loss": 0.0994,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 0.55,
1446
+ "learning_rate": 8.96454097858737e-05,
1447
+ "loss": 0.0792,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 0.55,
1452
+ "learning_rate": 8.890874189624951e-05,
1453
+ "loss": 0.0844,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 0.55,
1458
+ "learning_rate": 8.817268290786343e-05,
1459
+ "loss": 0.1028,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 0.55,
1464
+ "learning_rate": 8.743727322976787e-05,
1465
+ "loss": 0.0976,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 0.56,
1470
+ "learning_rate": 8.670255323536858e-05,
1471
+ "loss": 0.0878,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 0.56,
1476
+ "learning_rate": 8.596856326020821e-05,
1477
+ "loss": 0.0894,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 0.56,
1482
+ "learning_rate": 8.523534359975189e-05,
1483
+ "loss": 0.1023,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 0.56,
1488
+ "learning_rate": 8.450293450717517e-05,
1489
+ "loss": 0.1089,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 0.57,
1494
+ "learning_rate": 8.3771376191154e-05,
1495
+ "loss": 0.0945,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 0.57,
1500
+ "learning_rate": 8.304070881365747e-05,
1501
+ "loss": 0.0969,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 0.57,
1506
+ "learning_rate": 8.231097248774274e-05,
1507
+ "loss": 0.0813,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 0.57,
1512
+ "learning_rate": 8.158220727535299e-05,
1513
+ "loss": 0.0937,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 0.58,
1518
+ "learning_rate": 8.085445318511813e-05,
1519
+ "loss": 0.0827,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 0.58,
1524
+ "learning_rate": 8.012775017015828e-05,
1525
+ "loss": 0.0939,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 0.58,
1530
+ "learning_rate": 7.940213812589018e-05,
1531
+ "loss": 0.1075,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 0.58,
1536
+ "learning_rate": 7.867765688783733e-05,
1537
+ "loss": 0.0998,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 0.58,
1542
+ "learning_rate": 7.795434622944281e-05,
1543
+ "loss": 0.0895,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 0.59,
1548
+ "learning_rate": 7.723224585988584e-05,
1549
+ "loss": 0.1001,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 0.59,
1554
+ "learning_rate": 7.651139542190164e-05,
1555
+ "loss": 0.0923,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 0.59,
1560
+ "learning_rate": 7.579183448960531e-05,
1561
+ "loss": 0.1078,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 0.59,
1566
+ "learning_rate": 7.507360256631904e-05,
1567
+ "loss": 0.0997,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 0.6,
1572
+ "learning_rate": 7.435673908240357e-05,
1573
+ "loss": 0.0868,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 0.6,
1578
+ "learning_rate": 7.364128339309326e-05,
1579
+ "loss": 0.0902,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 0.6,
1584
+ "learning_rate": 7.292727477633575e-05,
1585
+ "loss": 0.094,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 0.6,
1590
+ "learning_rate": 7.221475243063563e-05,
1591
+ "loss": 0.0842,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 0.61,
1596
+ "learning_rate": 7.150375547290225e-05,
1597
+ "loss": 0.0889,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 0.61,
1602
+ "learning_rate": 7.079432293630244e-05,
1603
+ "loss": 0.1006,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 0.61,
1608
+ "learning_rate": 7.008649376811756e-05,
1609
+ "loss": 0.1044,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 0.61,
1614
+ "learning_rate": 6.938030682760532e-05,
1615
+ "loss": 0.0954,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 0.61,
1620
+ "learning_rate": 6.867580088386646e-05,
1621
+ "loss": 0.1115,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 0.62,
1626
+ "learning_rate": 6.797301461371625e-05,
1627
+ "loss": 0.101,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 0.62,
1632
+ "learning_rate": 6.727198659956133e-05,
1633
+ "loss": 0.0843,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 0.62,
1638
+ "learning_rate": 6.65727553272815e-05,
1639
+ "loss": 0.1034,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 0.62,
1644
+ "learning_rate": 6.58753591841168e-05,
1645
+ "loss": 0.0995,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 0.63,
1650
+ "learning_rate": 6.517983645656014e-05,
1651
+ "loss": 0.1048,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 0.63,
1656
+ "learning_rate": 6.448622532825545e-05,
1657
+ "loss": 0.0955,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 0.63,
1662
+ "learning_rate": 6.379456387790138e-05,
1663
+ "loss": 0.1,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 0.63,
1668
+ "learning_rate": 6.310489007716083e-05,
1669
+ "loss": 0.0813,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 0.63,
1674
+ "learning_rate": 6.24172417885762e-05,
1675
+ "loss": 0.1016,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 0.64,
1680
+ "learning_rate": 6.173165676349103e-05,
1681
+ "loss": 0.0921,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 0.64,
1686
+ "learning_rate": 6.104817263997727e-05,
1687
+ "loss": 0.1063,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 0.64,
1692
+ "learning_rate": 6.036682694076907e-05,
1693
+ "loss": 0.0992,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 0.64,
1698
+ "learning_rate": 5.96876570712028e-05,
1699
+ "loss": 0.0891,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 0.65,
1704
+ "learning_rate": 5.9010700317163404e-05,
1705
+ "loss": 0.1111,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 0.65,
1710
+ "learning_rate": 5.8335993843037695e-05,
1711
+ "loss": 0.0833,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 0.65,
1716
+ "learning_rate": 5.7663574689673847e-05,
1717
+ "loss": 0.1047,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 0.65,
1722
+ "learning_rate": 5.699347977234799e-05,
1723
+ "loss": 0.0967,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 0.66,
1728
+ "learning_rate": 5.6325745878737355e-05,
1729
+ "loss": 0.0964,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 0.66,
1734
+ "learning_rate": 5.566040966690115e-05,
1735
+ "loss": 0.1052,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 0.66,
1740
+ "learning_rate": 5.4997507663267546e-05,
1741
+ "loss": 0.0966,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 0.66,
1746
+ "learning_rate": 5.43370762606287e-05,
1747
+ "loss": 0.1143,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 0.66,
1752
+ "learning_rate": 5.367915171614273e-05,
1753
+ "loss": 0.1063,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 0.67,
1758
+ "learning_rate": 5.302377014934322e-05,
1759
+ "loss": 0.1051,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 0.67,
1764
+ "learning_rate": 5.2370967540156346e-05,
1765
+ "loss": 0.1008,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 0.67,
1770
+ "learning_rate": 5.172077972692553e-05,
1771
+ "loss": 0.0898,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 0.67,
1776
+ "learning_rate": 5.1073242404443974e-05,
1777
+ "loss": 0.1035,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 0.68,
1782
+ "learning_rate": 5.042839112199509e-05,
1783
+ "loss": 0.0887,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 0.68,
1788
+ "learning_rate": 4.978626128140074e-05,
1789
+ "loss": 0.0942,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 0.68,
1794
+ "learning_rate": 4.914688813507797e-05,
1795
+ "loss": 0.0857,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 0.68,
1800
+ "learning_rate": 4.851030678410331e-05,
1801
+ "loss": 0.0841,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 0.68,
1806
+ "learning_rate": 4.7876552176286005e-05,
1807
+ "loss": 0.0849,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 0.69,
1812
+ "learning_rate": 4.724565910424946e-05,
1813
+ "loss": 0.103,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 0.69,
1818
+ "learning_rate": 4.661766220352097e-05,
1819
+ "loss": 0.0922,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 0.69,
1824
+ "learning_rate": 4.59925959506302e-05,
1825
+ "loss": 0.0807,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 0.69,
1830
+ "learning_rate": 4.5370494661216835e-05,
1831
+ "loss": 0.0939,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 0.7,
1836
+ "learning_rate": 4.475139248814625e-05,
1837
+ "loss": 0.0867,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 0.7,
1842
+ "learning_rate": 4.4135323419634766e-05,
1843
+ "loss": 0.1008,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 0.7,
1848
+ "learning_rate": 4.352232127738368e-05,
1849
+ "loss": 0.091,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 0.7,
1854
+ "learning_rate": 4.2912419714722496e-05,
1855
+ "loss": 0.0803,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 0.71,
1860
+ "learning_rate": 4.230565221476131e-05,
1861
+ "loss": 0.0915,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 0.71,
1866
+ "learning_rate": 4.170205208855281e-05,
1867
+ "loss": 0.1014,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 0.71,
1872
+ "learning_rate": 4.1101652473263195e-05,
1873
+ "loss": 0.096,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 0.71,
1878
+ "learning_rate": 4.0504486330353264e-05,
1879
+ "loss": 0.0707,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 0.71,
1884
+ "learning_rate": 3.9910586443768806e-05,
1885
+ "loss": 0.086,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 0.72,
1890
+ "learning_rate": 3.931998541814069e-05,
1891
+ "loss": 0.0973,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 0.72,
1896
+ "learning_rate": 3.873271567699485e-05,
1897
+ "loss": 0.0964,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 0.72,
1902
+ "learning_rate": 3.814880946097252e-05,
1903
+ "loss": 0.1186,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 0.72,
1908
+ "learning_rate": 3.756829882606001e-05,
1909
+ "loss": 0.1123,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 0.73,
1914
+ "learning_rate": 3.69912156418289e-05,
1915
+ "loss": 0.1031,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 0.73,
1920
+ "learning_rate": 3.641759158968649e-05,
1921
+ "loss": 0.0994,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 0.73,
1926
+ "learning_rate": 3.584745816113648e-05,
1927
+ "loss": 0.1068,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 0.73,
1932
+ "learning_rate": 3.528084665605013e-05,
1933
+ "loss": 0.1074,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 0.74,
1938
+ "learning_rate": 3.471778818094785e-05,
1939
+ "loss": 0.0813,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 0.74,
1944
+ "learning_rate": 3.4158313647291604e-05,
1945
+ "loss": 0.0891,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 0.74,
1950
+ "learning_rate": 3.360245376978779e-05,
1951
+ "loss": 0.0916,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 0.74,
1956
+ "learning_rate": 3.3050239064701016e-05,
1957
+ "loss": 0.0828,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 0.74,
1962
+ "learning_rate": 3.250169984817897e-05,
1963
+ "loss": 0.1014,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 0.75,
1968
+ "learning_rate": 3.1956866234587766e-05,
1969
+ "loss": 0.1002,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 0.75,
1974
+ "learning_rate": 3.1415768134858945e-05,
1975
+ "loss": 0.0896,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 0.75,
1980
+ "learning_rate": 3.0878435254847394e-05,
1981
+ "loss": 0.0997,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 0.75,
1986
+ "learning_rate": 3.034489709370033e-05,
1987
+ "loss": 0.0792,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 0.76,
1992
+ "learning_rate": 2.9815182942237885e-05,
1993
+ "loss": 0.097,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 0.76,
1998
+ "learning_rate": 2.9289321881345254e-05,
1999
+ "loss": 0.1029,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 0.76,
2004
+ "learning_rate": 2.8767342780375926e-05,
2005
+ "loss": 0.0976,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 0.76,
2010
+ "learning_rate": 2.8249274295566864e-05,
2011
+ "loss": 0.0858,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 0.76,
2016
+ "learning_rate": 2.7735144868465458e-05,
2017
+ "loss": 0.0959,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 0.77,
2022
+ "learning_rate": 2.7224982724367776e-05,
2023
+ "loss": 0.0959,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 0.77,
2028
+ "learning_rate": 2.6718815870769287e-05,
2029
+ "loss": 0.0961,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 0.77,
2034
+ "learning_rate": 2.6216672095827266e-05,
2035
+ "loss": 0.1135,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 0.77,
2040
+ "learning_rate": 2.5718578966835117e-05,
2041
+ "loss": 0.0916,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 0.78,
2046
+ "learning_rate": 2.5224563828708902e-05,
2047
+ "loss": 0.0934,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 0.78,
2052
+ "learning_rate": 2.4734653802486428e-05,
2053
+ "loss": 0.1019,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 0.78,
2058
+ "learning_rate": 2.4248875783837987e-05,
2059
+ "loss": 0.1119,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 0.78,
2064
+ "learning_rate": 2.3767256441590014e-05,
2065
+ "loss": 0.0853,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 0.79,
2070
+ "learning_rate": 2.328982221626087e-05,
2071
+ "loss": 0.0968,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 0.79,
2076
+ "learning_rate": 2.2816599318609368e-05,
2077
+ "loss": 0.0871,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 0.79,
2082
+ "learning_rate": 2.234761372819577e-05,
2083
+ "loss": 0.092,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 0.79,
2088
+ "learning_rate": 2.1882891191955534e-05,
2089
+ "loss": 0.0968,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 0.79,
2094
+ "learning_rate": 2.1422457222785873e-05,
2095
+ "loss": 0.085,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 0.8,
2100
+ "learning_rate": 2.0966337098145037e-05,
2101
+ "loss": 0.0786,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 0.8,
2106
+ "learning_rate": 2.0514555858664663e-05,
2107
+ "loss": 0.0822,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 0.8,
2112
+ "learning_rate": 2.0067138306775124e-05,
2113
+ "loss": 0.082,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 0.8,
2118
+ "learning_rate": 1.9624109005343672e-05,
2119
+ "loss": 0.0896,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 0.81,
2124
+ "learning_rate": 1.918549227632619e-05,
2125
+ "loss": 0.0976,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 0.81,
2130
+ "learning_rate": 1.875131219943187e-05,
2131
+ "loss": 0.0929,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 0.81,
2136
+ "learning_rate": 1.832159261080122e-05,
2137
+ "loss": 0.0928,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 0.81,
2142
+ "learning_rate": 1.7896357101697404e-05,
2143
+ "loss": 0.0897,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 0.82,
2148
+ "learning_rate": 1.747562901721135e-05,
2149
+ "loss": 0.0841,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 0.82,
2154
+ "learning_rate": 1.7059431454979824e-05,
2155
+ "loss": 0.0927,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 0.82,
2160
+ "learning_rate": 1.6647787263917612e-05,
2161
+ "loss": 0.1053,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 0.82,
2166
+ "learning_rate": 1.6240719042963002e-05,
2167
+ "loss": 0.0988,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 0.82,
2172
+ "learning_rate": 1.5838249139837202e-05,
2173
+ "loss": 0.0927,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 0.83,
2178
+ "learning_rate": 1.5440399649817385e-05,
2179
+ "loss": 0.0923,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 0.83,
2184
+ "learning_rate": 1.5047192414523815e-05,
2185
+ "loss": 0.0766,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 0.83,
2190
+ "learning_rate": 1.4658649020720538e-05,
2191
+ "loss": 0.0833,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 0.83,
2196
+ "learning_rate": 1.42747907991305e-05,
2197
+ "loss": 0.1001,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 0.84,
2202
+ "learning_rate": 1.3895638823264446e-05,
2203
+ "loss": 0.0808,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 0.84,
2208
+ "learning_rate": 1.352121390826393e-05,
2209
+ "loss": 0.0757,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 0.84,
2214
+ "learning_rate": 1.3151536609758586e-05,
2215
+ "loss": 0.0884,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 0.84,
2220
+ "learning_rate": 1.27866272227378e-05,
2221
+ "loss": 0.0865,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 0.84,
2226
+ "learning_rate": 1.2426505780436326e-05,
2227
+ "loss": 0.085,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 0.85,
2232
+ "learning_rate": 1.2071192053234581e-05,
2233
+ "loss": 0.1036,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 0.85,
2238
+ "learning_rate": 1.1720705547573263e-05,
2239
+ "loss": 0.0877,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 0.85,
2244
+ "learning_rate": 1.1375065504882465e-05,
2245
+ "loss": 0.0911,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 0.85,
2250
+ "learning_rate": 1.103429090052528e-05,
2251
+ "loss": 0.1026,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 0.86,
2256
+ "learning_rate": 1.0698400442756152e-05,
2257
+ "loss": 0.0913,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 0.86,
2262
+ "learning_rate": 1.0367412571693747e-05,
2263
+ "loss": 0.0884,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 0.86,
2268
+ "learning_rate": 1.0041345458308616e-05,
2269
+ "loss": 0.101,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 0.86,
2274
+ "learning_rate": 9.720217003425647e-06,
2275
+ "loss": 0.094,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 0.87,
2280
+ "learning_rate": 9.404044836741343e-06,
2281
+ "loss": 0.0981,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 0.87,
2286
+ "learning_rate": 9.092846315855841e-06,
2287
+ "loss": 0.0904,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 0.87,
2292
+ "learning_rate": 8.786638525320146e-06,
2293
+ "loss": 0.1063,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 0.87,
2298
+ "learning_rate": 8.485438275698154e-06,
2299
+ "loss": 0.0881,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 0.87,
2304
+ "learning_rate": 8.189262102643746e-06,
2305
+ "loss": 0.0981,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 0.88,
2310
+ "learning_rate": 7.89812626599291e-06,
2311
+ "loss": 0.0787,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 0.88,
2316
+ "learning_rate": 7.612046748871327e-06,
2317
+ "loss": 0.0884,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 0.88,
2322
+ "learning_rate": 7.331039256816663e-06,
2323
+ "loss": 0.0824,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 0.88,
2328
+ "learning_rate": 7.0551192169164505e-06,
2329
+ "loss": 0.0943,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 0.89,
2334
+ "learning_rate": 6.7843017769612215e-06,
2335
+ "loss": 0.0786,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 0.89,
2340
+ "learning_rate": 6.518601804612734e-06,
2341
+ "loss": 0.1042,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 0.89,
2346
+ "learning_rate": 6.258033886587911e-06,
2347
+ "loss": 0.0886,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 0.89,
2352
+ "learning_rate": 6.00261232785797e-06,
2353
+ "loss": 0.1036,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 0.89,
2358
+ "learning_rate": 5.7523511508631336e-06,
2359
+ "loss": 0.0959,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 0.9,
2364
+ "learning_rate": 5.50726409474267e-06,
2365
+ "loss": 0.0787,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 0.9,
2370
+ "learning_rate": 5.267364614580861e-06,
2371
+ "loss": 0.0944,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 0.9,
2376
+ "learning_rate": 5.032665880668119e-06,
2377
+ "loss": 0.087,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 0.9,
2382
+ "learning_rate": 4.803180777778049e-06,
2383
+ "loss": 0.0955,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 0.91,
2388
+ "learning_rate": 4.578921904460076e-06,
2389
+ "loss": 0.101,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 0.91,
2394
+ "learning_rate": 4.359901572347758e-06,
2395
+ "loss": 0.0934,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 0.91,
2400
+ "learning_rate": 4.146131805482944e-06,
2401
+ "loss": 0.1045,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 0.91,
2406
+ "learning_rate": 3.937624339655599e-06,
2407
+ "loss": 0.0893,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 0.92,
2412
+ "learning_rate": 3.734390621759565e-06,
2413
+ "loss": 0.0766,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 0.92,
2418
+ "learning_rate": 3.5364418091641373e-06,
2419
+ "loss": 0.1068,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 0.92,
2424
+ "learning_rate": 3.343788769101486e-06,
2425
+ "loss": 0.0891,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 0.92,
2430
+ "learning_rate": 3.156442078070143e-06,
2431
+ "loss": 0.0968,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 0.92,
2436
+ "learning_rate": 2.974412021254236e-06,
2437
+ "loss": 0.0988,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 0.93,
2442
+ "learning_rate": 2.7977085919589254e-06,
2443
+ "loss": 0.0907,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 0.93,
2448
+ "learning_rate": 2.6263414910618012e-06,
2449
+ "loss": 0.0952,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 0.93,
2454
+ "learning_rate": 2.460320126480242e-06,
2455
+ "loss": 0.0816,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 0.93,
2460
+ "learning_rate": 2.2996536126549395e-06,
2461
+ "loss": 0.107,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 0.94,
2466
+ "learning_rate": 2.144350770049597e-06,
2467
+ "loss": 0.1078,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 0.94,
2472
+ "learning_rate": 1.9944201246666074e-06,
2473
+ "loss": 0.0879,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 0.94,
2478
+ "learning_rate": 1.8498699075789939e-06,
2479
+ "loss": 0.0922,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 0.94,
2484
+ "learning_rate": 1.7107080544785937e-06,
2485
+ "loss": 0.1013,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 0.95,
2490
+ "learning_rate": 1.576942205240317e-06,
2491
+ "loss": 0.0913,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 0.95,
2496
+ "learning_rate": 1.4485797035027727e-06,
2497
+ "loss": 0.0836,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 0.95,
2502
+ "learning_rate": 1.3256275962651222e-06,
2503
+ "loss": 0.0998,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 0.95,
2508
+ "learning_rate": 1.208092633500102e-06,
2509
+ "loss": 0.0973,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 0.95,
2514
+ "learning_rate": 1.0959812677835968e-06,
2515
+ "loss": 0.1085,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 0.96,
2520
+ "learning_rate": 9.892996539403232e-07,
2521
+ "loss": 0.0921,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 0.96,
2526
+ "learning_rate": 8.880536487059333e-07,
2527
+ "loss": 0.0922,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 0.96,
2532
+ "learning_rate": 7.922488104054825e-07,
2533
+ "loss": 0.0999,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 0.96,
2538
+ "learning_rate": 7.018903986483083e-07,
2539
+ "loss": 0.0816,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 0.97,
2544
+ "learning_rate": 6.169833740392595e-07,
2545
+ "loss": 0.0999,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 0.97,
2550
+ "learning_rate": 5.375323979063928e-07,
2551
+ "loss": 0.1,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 0.97,
2556
+ "learning_rate": 4.635418320450335e-07,
2557
+ "loss": 0.0901,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 0.97,
2562
+ "learning_rate": 3.950157384783104e-07,
2563
+ "loss": 0.0886,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 0.97,
2568
+ "learning_rate": 3.319578792342126e-07,
2569
+ "loss": 0.095,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 0.98,
2574
+ "learning_rate": 2.7437171613898807e-07,
2575
+ "loss": 0.0776,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 0.98,
2580
+ "learning_rate": 2.2226041062715086e-07,
2581
+ "loss": 0.0844,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 0.98,
2586
+ "learning_rate": 1.7562682356786487e-07,
2587
+ "loss": 0.0994,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 0.98,
2592
+ "learning_rate": 1.344735151079246e-07,
2593
+ "loss": 0.1034,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 0.99,
2598
+ "learning_rate": 9.88027445312123e-08,
2599
+ "loss": 0.0961,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 0.99,
2604
+ "learning_rate": 6.861647013461925e-08,
2605
+ "loss": 0.0834,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 0.99,
2610
+ "learning_rate": 4.391634912056519e-08,
2611
+ "loss": 0.0886,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 0.99,
2616
+ "learning_rate": 2.4703737506037715e-08,
2617
+ "loss": 0.0834,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 1.0,
2622
+ "learning_rate": 1.0979690048107394e-08,
2623
+ "loss": 0.0827,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 1.0,
2628
+ "learning_rate": 2.7449601860629613e-09,
2629
+ "loss": 0.0913,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 1.0,
2634
+ "learning_rate": 0.0,
2635
+ "loss": 0.0741,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 1.0,
2640
+ "step": 438,
2641
+ "total_flos": 5.152420811453235e+17,
2642
+ "train_loss": 0.1459304948239566,
2643
+ "train_runtime": 5831.9464,
2644
+ "train_samples_per_second": 1.2,
2645
+ "train_steps_per_second": 0.075
2646
+ }
2647
+ ],
2648
+ "max_steps": 438,
2649
+ "num_train_epochs": 1,
2650
+ "total_flos": 5.152420811453235e+17,
2651
+ "trial_name": null,
2652
+ "trial_params": null
2653
+ }