Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,146 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- sagemaker
|
6 |
+
- bart
|
7 |
+
- summarization
|
8 |
+
datasets:
|
9 |
+
- samsum
|
10 |
+
widget:
|
11 |
+
- text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\
|
12 |
+
Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\
|
13 |
+
\ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\
|
14 |
+
\ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face\n"
|
15 |
+
model-index:
|
16 |
+
- name: bart-large-cnn-samsum
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: summarization
|
20 |
+
name: Summarization
|
21 |
+
dataset:
|
22 |
+
name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization'
|
23 |
+
type: samsum
|
24 |
+
metrics:
|
25 |
+
- type: rogue-1
|
26 |
+
value: 42.621
|
27 |
+
name: Validation ROGUE-1
|
28 |
+
- type: rogue-2
|
29 |
+
value: 21.9825
|
30 |
+
name: Validation ROGUE-2
|
31 |
+
- type: rogue-l
|
32 |
+
value: 33.034
|
33 |
+
name: Validation ROGUE-L
|
34 |
+
- type: rogue-1
|
35 |
+
value: 41.3174
|
36 |
+
name: Test ROGUE-1
|
37 |
+
- type: rogue-2
|
38 |
+
value: 20.8716
|
39 |
+
name: Test ROGUE-2
|
40 |
+
- type: rogue-l
|
41 |
+
value: 32.1337
|
42 |
+
name: Test ROGUE-L
|
43 |
+
- task:
|
44 |
+
type: summarization
|
45 |
+
name: Summarization
|
46 |
+
dataset:
|
47 |
+
name: samsum
|
48 |
+
type: samsum
|
49 |
+
config: samsum
|
50 |
+
split: test
|
51 |
+
metrics:
|
52 |
+
- type: rouge
|
53 |
+
value: 41.3282
|
54 |
+
name: ROUGE-1
|
55 |
+
verified: true
|
56 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTYzNzZkZDUzOWQzNGYxYTJhNGE4YWYyZjA0NzMyOWUzMDNhMmVhYzY1YTM0ZTJhYjliNGE4MDZhMjhhYjRkYSIsInZlcnNpb24iOjF9.OOM6l3v5rJCndmUIJV-2SDh2NjbPo5IgQOSL-Ju1Gwbi1voL5amsDEDOelaqlUBE3n55KkUsMLZhyn66yWxZBQ
|
57 |
+
- type: rouge
|
58 |
+
value: 20.8755
|
59 |
+
name: ROUGE-2
|
60 |
+
verified: true
|
61 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWZiODFiYWQzY2NmOTc5YjA3NTI0YzQ1MzQ0ODk2NjgyMmVlMjA5MjZiNTJkMGRmZGEzN2M3MDNkMjkxMDVhYSIsInZlcnNpb24iOjF9.b8cPk2-IL24La3Vd0hhtii4tRXujh5urAwy6IVeTWHwYfXaURyC2CcQOWtlOx5bdO5KACeaJFrFBCGgjk-VGCQ
|
62 |
+
- type: rouge
|
63 |
+
value: 32.1353
|
64 |
+
name: ROUGE-L
|
65 |
+
verified: true
|
66 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWNmYzdiYWQ2ZWRkYzRiMGMxNWUwODgwZTdkY2NjZTc1NWE5NTFiMzU0OTU1N2JjN2ExYWQ2NGZkNjk5OTc4YSIsInZlcnNpb24iOjF9.Fzv4p-TEVicljiCqsBJHK1GsnE_AwGqamVmxTPI0WBNSIhZEhliRGmIL_z1pDq6WOzv3GN2YUGvhowU7GxnyAQ
|
67 |
+
- type: rouge
|
68 |
+
value: 38.401
|
69 |
+
name: ROUGE-LSUM
|
70 |
+
verified: true
|
71 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGI4MWY0NWMxMmQ0ODQ5MDhiNDczMDAzYzJkODBiMzgzYWNkMWM2YTZkZDJmNWJiOGQ3MmNjMGViN2UzYWI2ZSIsInZlcnNpb24iOjF9.7lw3h5k5lJ7tYFLZGUtLyDabFYd00l6ByhmvkW4fykocBy9Blyin4tdw4Xps4DW-pmrdMLgidHxBWz5MrSx1Bw
|
72 |
+
- type: loss
|
73 |
+
value: 1.4297215938568115
|
74 |
+
name: loss
|
75 |
+
verified: true
|
76 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzI0ZWNhNDM5YTViZDMyZGJjMDA1ZWFjYzNhOTdlOTFiNzhhMDBjNmM2MjA3ZmRkZjJjMjEyMGY3MzcwOTI2NyIsInZlcnNpb24iOjF9.oNaZsAtUDqGAqoZWJavlcW7PKx1AWsnkbhaQxadpOKk_u7ywJJabvTtzyx_DwEgZslgDETCf4MM-JKitZKjiDA
|
77 |
+
- type: gen_len
|
78 |
+
value: 60.0757
|
79 |
+
name: gen_len
|
80 |
+
verified: true
|
81 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgwYWYwMDRkNTJkMDM5N2I2MWNmYzQ3OWM1NDJmODUyZGViMGE4ZTdkNmIwYWM2N2VjZDNmN2RiMDE4YTYyYiIsInZlcnNpb24iOjF9.PbXTcNYX_SW-BuRQEcqyc21M7uKrOMbffQSAK6k2GLzTVRrzZxsDC57ktKL68zRY8fSiRGsnknOwv-nAR6YBCQ
|
82 |
+
---
|
83 |
+
|
84 |
+
## `bart-large-cnn-samsum`
|
85 |
+
|
86 |
+
> If you want to use the model you should try a newer fine-tuned FLAN-T5 version [philschmid/flan-t5-base-samsum](https://huggingface.co/philschmid/flan-t5-base-samsum) out socring the BART version with `+6` on `ROGUE1` achieving `47.24`.
|
87 |
+
|
88 |
+
# TRY [philschmid/flan-t5-base-samsum](https://huggingface.co/philschmid/flan-t5-base-samsum)
|
89 |
+
|
90 |
+
|
91 |
+
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
|
92 |
+
|
93 |
+
For more information look at:
|
94 |
+
- [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html)
|
95 |
+
- [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker)
|
96 |
+
- [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html)
|
97 |
+
- [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html)
|
98 |
+
- [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers)
|
99 |
+
|
100 |
+
## Hyperparameters
|
101 |
+
```json
|
102 |
+
{
|
103 |
+
"dataset_name": "samsum",
|
104 |
+
"do_eval": true,
|
105 |
+
"do_predict": true,
|
106 |
+
"do_train": true,
|
107 |
+
"fp16": true,
|
108 |
+
"learning_rate": 5e-05,
|
109 |
+
"model_name_or_path": "facebook/bart-large-cnn",
|
110 |
+
"num_train_epochs": 3,
|
111 |
+
"output_dir": "/opt/ml/model",
|
112 |
+
"per_device_eval_batch_size": 4,
|
113 |
+
"per_device_train_batch_size": 4,
|
114 |
+
"predict_with_generate": true,
|
115 |
+
"seed": 7
|
116 |
+
}
|
117 |
+
```
|
118 |
+
|
119 |
+
## Usage
|
120 |
+
```python
|
121 |
+
from transformers import pipeline
|
122 |
+
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
|
123 |
+
|
124 |
+
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
|
125 |
+
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
|
126 |
+
Jeff: ok.
|
127 |
+
Jeff: and how can I get started?
|
128 |
+
Jeff: where can I find documentation?
|
129 |
+
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
|
130 |
+
'''
|
131 |
+
summarizer(conversation)
|
132 |
+
```
|
133 |
+
|
134 |
+
## Results
|
135 |
+
|
136 |
+
| key | value |
|
137 |
+
| --- | ----- |
|
138 |
+
| eval_rouge1 | 42.621 |
|
139 |
+
| eval_rouge2 | 21.9825 |
|
140 |
+
| eval_rougeL | 33.034 |
|
141 |
+
| eval_rougeLsum | 39.6783 |
|
142 |
+
| test_rouge1 | 41.3174 |
|
143 |
+
| test_rouge2 | 20.8716 |
|
144 |
+
| test_rougeL | 32.1337 |
|
145 |
+
| test_rougeLsum | 38.4149 |
|
146 |
+
|