ajaycompete143
commited on
Commit
·
22172a5
1
Parent(s):
fa897be
First cut of Lunar Lnader decent using PPO with reward 128
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 237.54 +/- 61.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd7f5ff8280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd7f5ff8310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd7f5ff83a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd7f5ff8430>", "_build": "<function ActorCriticPolicy._build at 0x7fd7f5ff84c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd7f5ff8550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd7f5ff85e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd7f5ff8670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd7f5ff8700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd7f5ff8790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd7f5ff8820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd7f5ff88b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd7f5ff64c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688468035543631203, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADMplT0fDfy5Np+dOY/HmTQTFUU7c1K7uAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBw7rTpgTiMAWyUTQ0BjAF0lEdAn+i7TlT3qXV9lChoBkdASVVfgJkXlGgHS99oCEdAn+o79qDbrXV9lChoBkdAceIjXFtKqWgHTZsBaAhHQJ/s6ews5GV1fZQoaAZHQHFxzVc2R7toB00aAWgIR0Cf8BmOU+s6dX2UKGgGR0Bw2/c8DB/JaAdNWQFoCEdAn/Jy6DoQnXV9lChoBkdAY9BX2dupCWgHTegDaAhHQJ/6gCzTnaF1fZQoaAZHwB0mKVII4VBoB0v7aAhHQJ/8JC6Ymb91fZQoaAZHQGvsgq/dqL1oB022AWgIR0CgACyU9pyqdX2UKGgGR0BfWsrd30PIaAdN6ANoCEdAoAQrO7g883V9lChoBkdAcOdE12q1gGgHTTkBaAhHQKAFMynk1dh1fZQoaAZHQGzCvLowEhdoB01SAWgIR0CgBkejdpIudX2UKGgGR0Bt+HWFvhqCaAdNGQFoCEdAoAfUNWluWXV9lChoBkdAQgJvYODraGgHS7NoCEdAoAiejj7yhHV9lChoBkdAY5M7NB4UvmgHTegDaAhHQKAOYQcxTKl1fZQoaAZHQG3t495hScdoB02hA2gIR0CgE90dzXBhdX2UKGgGR0Bw57vLHMlkaAdNhwFoCEdAoBUvJgb6xnV9lChoBkdAcdpG2kSElGgHTa8BaAhHQKAWrxYJVsF1fZQoaAZHQHDt1qFh5PdoB01AAWgIR0CgGJhmGucMdX2UKGgGR0BvjMspXp4baAdNOQFoCEdAoBmw/NZ/1HV9lChoBkdAccSJCjUNKGgHTTgBaAhHQKAawaVlf7d1fZQoaAZHQG5hGVAzHjpoB01CAWgIR0CgHKE6DGtIdX2UKGgGR0BxTdi5NGmUaAdNkQFoCEdAoB4IctGutHV9lChoBkdAcVu+CK77K2gHTVQBaAhHQKAfJzK9wm51fZQoaAZHQFNMii7CiypoB0vmaAhHQKAgnkzXSSh1fZQoaAZHQG1qRoysS01oB00hAWgIR0CgIZM72cridX2UKGgGR0BKX6KtPpIMaAdL0GgIR0CgIkjRUm2LdX2UKGgGR0BvgV/c32mIaAdNPwFoCEdAoCNeAskIHHV9lChoBkdAbqFSqlxffGgHTUQBaAhHQKAlJAD7qIJ1fZQoaAZHQEbLQNTcZcdoB00AAWgIR0CgJgPf8/D+dX2UKGgGR0Bx6/KuB+WoaAdNSgFoCEdAoCdJUxVQynV9lChoBkdAb6fvfj0cwWgHTWgBaAhHQKApx9JBgNR1fZQoaAZHQHBEYIF/x2BoB01TAWgIR0CgK0fnnuAqdX2UKGgGR0BxoeLUCq6waAdNYAFoCEdAoC0XywwCbXV9lChoBkdAXQc7YChexGgHTegDaAhHQKAyrEWqLjx1fZQoaAZHQHCHACW/rSpoB002AWgIR0CgNGRoRIz4dX2UKGgGR0BwyJuEVWS2aAdNGQFoCEdAoDVSidrftXV9lChoBkdAQ5GVVxS5y2gHS9hoCEdAoDYGhh6SknV9lChoBkdAcHL2a2F36mgHTTQBaAhHQKA3DReC04R1fZQoaAZHQG3T+KbayrxoB00sAWgIR0CgOMCYCyQgdX2UKGgGR0BHmIvi97F9aAdL0GgIR0CgOXAvtdAxdX2UKGgGR0Bs3iBK+SKWaAdNBQFoCEdAoDpHEKmbb3V9lChoBkdAYY3PkaMrE2gHTegDaAhHQKA+PozvZyx1fZQoaAZHQG+0LsrupjtoB01vAWgIR0CgQAkgntv5dX2UKGgGR0BxsY9GI9DAaAdNPwFoCEdAoEEVZLZi/nV9lChoBkdAcfU16Vt4zWgHTQICaAhHQKBCwDIzWPN1fZQoaAZHQHHyEH6dlNFoB00FAWgIR0CgREJJoTPCdX2UKGgGR0BxQTYukDZEaAdNjQJoCEdAoEatIPK+z3V9lChoBkdAcM2LcsUZemgHTXwBaAhHQKBJPR3u/lB1fZQoaAZHQHAOlN5+pfhoB008AWgIR0CgSrP6sQumdX2UKGgGR0Bw8fg75mAcaAdNKAFoCEdAoEwwy6+WW3V9lChoBkdAcX7F85S3s2gHTQQBaAhHQKBNkPrfLs91fZQoaAZHQEEB5X2dupFoB0vNaAhHQKBPqQBgeBB1fZQoaAZHQHGeGWD6FdtoB01PAWgIR0CgUPz+m3vydX2UKGgGR0BjG5z/6wdKaAdN6ANoCEdAoFTwNgBtDXV9lChoBkdAbgUYMOPNmmgHTS0BaAhHQKBV6rvLHMl1fZQoaAZHQG80qXWvr4ZoB00GAWgIR0CgV2t2C/XYdX2UKGgGR0BwR4GdI5HVaAdNQQFoCEdAoFh7HZK3/nV9lChoBkdAb6UQCjk+5mgHTesBaAhHQKBaG5T6zmh1fZQoaAZHQEosJb+tKZloB0vbaAhHQKBbe5jH4oJ1fZQoaAZHQE9gAbQ1JlJoB0viaAhHQKBcPollbvB1fZQoaAZHQHF1iylenhtoB00IAWgIR0CgXRpUgjhUdX2UKGgGR0BwhSy6cy31aAdNEwFoCEdAoF4AD5j6N3V9lChoBkdAbNxrGBFuvWgHTQQBaAhHQKBfgk30f5l1fZQoaAZHQGGBl41P3ztoB03oA2gIR0CgY3YBmwqzdX2UKGgGR0Bws0ogFHJ+aAdNKAFoCEdAoGR1D6WPcXV9lChoBkdAbzXNzKcNIGgHTYgBaAhHQKBmLQIldC51fZQoaAZHQD8VAVwgkkdoB0v0aAhHQKBnNhMrVe91fZQoaAZHQHCHE8eS0ShoB00sAWgIR0CgaZonSfDldX2UKGgGR0BwK8qAjIJaaAdNNwFoCEdAoGsepS75EnV9lChoBkdAWm1lNDc/MWgHTegDaAhHQKBwR3BYV7B1fZQoaAZHQHDsk96kZaVoB01hAWgIR0CgcWiSJTESdX2UKGgGR0BvZqI+GGmDaAdNcQFoCEdAoHNXLvCuU3V9lChoBkdAcIK6S1Vo6GgHTW4BaAhHQKB0izkZJkJ1fZQoaAZHQGuRNhd+ocdoB02GAWgIR0CgddeY+jdpdX2UKGgGR0BwtaCTUy57aAdNGAFoCEdAoHd70QK8c3V9lChoBkdAcQa5CWu5jGgHTS4BaAhHQKB4eSRr8BN1fZQoaAZHQGyXJZGKAJ9oB03KAWgIR0CgefRXfZVXdX2UKGgGR0BvBYPsiSq3aAdNLgFoCEdAoHub987ZF3V9lChoBkdAcaq8TSLIgmgHTS4BaAhHQKB8lRCQcPx1fZQoaAZHQHILpTqB3A5oB02PAWgIR0Cgfd2SlnAZdX2UKGgGR0Bt9K5kK/mDaAdNFQFoCEdAoH9iZx7zCnV9lChoBkdAb8q7HyVfNWgHTS4BaAhHQKCAWr5qM3t1fZQoaAZHQF9ObfgrH2hoB03oA2gIR0CghL3kgfU4dX2UKGgGR0BwgPm4iHIqaAdNGgFoCEdAoIX26f8Mu3V9lChoBkdAcDk2A5JbuGgHTWABaAhHQKCIneLvTgF1fZQoaAZHQHDkWN70Fr5oB00rAWgIR0CgijFfAsTWdX2UKGgGR0BwNPpwCKaYaAdNLgFoCEdAoIvGnQ6ZIHV9lChoBkdAKEQOOKfnOmgHS81oCEdAoIzZKxs2vXV9lChoBkdAOue18b70nWgHS8loCEdAoI6xuuRs/XV9lChoBkdAcM/K2a2F4GgHTXwBaAhHQKCQB2/zreJ1fZQoaAZHQFD+WY4Qz1toB0v+aAhHQKCQ5ZDArQR1fZQoaAZHQG+rn0K7ZnNoB00nAmgIR0Cgk6PKlpGndX2UKGgGR0BwOMMSbpeNaAdNFQFoCEdAoJSbYh+vyXV9lChoBkdAcMucL0BfbGgHTToBaAhHQKCVr3Zf2K51fZQoaAZHQHCtbtmcvuhoB00qAWgIR0Cgl1c5CF9KdX2UKGgGR0Bwh3LTx5LRaAdNbQFoCEdAoJiI2uPmxXV9lChoBkdAa0/W3jMmnmgHTQ4BaAhHQKCZakM1CPZ1fZQoaAZHQHLwY9LYf4hoB01oAWgIR0Cgm0e5vtMPdX2UKGgGR0BuYNXLeQ+2aAdNEAFoCEdAoJwptrKvFHV9lChoBkdAcUHzNUwSJ2gHTWsBaAhHQKCdYc+7lJZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21c7a7c39b67a6860ea87ddd3ec2890ffe3d7c157921d9f023440bcd8bf0ef55
|
3 |
+
size 146081
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd7f5ff8280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd7f5ff8310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd7f5ff83a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd7f5ff8430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd7f5ff84c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd7f5ff8550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd7f5ff85e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd7f5ff8670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd7f5ff8700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd7f5ff8790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd7f5ff8820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd7f5ff88b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd7f5ff64c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688468035543631203,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADMplT0fDfy5Np+dOY/HmTQTFUU7c1K7uAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBw7rTpgTiMAWyUTQ0BjAF0lEdAn+i7TlT3qXV9lChoBkdASVVfgJkXlGgHS99oCEdAn+o79qDbrXV9lChoBkdAceIjXFtKqWgHTZsBaAhHQJ/s6ews5GV1fZQoaAZHQHFxzVc2R7toB00aAWgIR0Cf8BmOU+s6dX2UKGgGR0Bw2/c8DB/JaAdNWQFoCEdAn/Jy6DoQnXV9lChoBkdAY9BX2dupCWgHTegDaAhHQJ/6gCzTnaF1fZQoaAZHwB0mKVII4VBoB0v7aAhHQJ/8JC6Ymb91fZQoaAZHQGvsgq/dqL1oB022AWgIR0CgACyU9pyqdX2UKGgGR0BfWsrd30PIaAdN6ANoCEdAoAQrO7g883V9lChoBkdAcOdE12q1gGgHTTkBaAhHQKAFMynk1dh1fZQoaAZHQGzCvLowEhdoB01SAWgIR0CgBkejdpIudX2UKGgGR0Bt+HWFvhqCaAdNGQFoCEdAoAfUNWluWXV9lChoBkdAQgJvYODraGgHS7NoCEdAoAiejj7yhHV9lChoBkdAY5M7NB4UvmgHTegDaAhHQKAOYQcxTKl1fZQoaAZHQG3t495hScdoB02hA2gIR0CgE90dzXBhdX2UKGgGR0Bw57vLHMlkaAdNhwFoCEdAoBUvJgb6xnV9lChoBkdAcdpG2kSElGgHTa8BaAhHQKAWrxYJVsF1fZQoaAZHQHDt1qFh5PdoB01AAWgIR0CgGJhmGucMdX2UKGgGR0BvjMspXp4baAdNOQFoCEdAoBmw/NZ/1HV9lChoBkdAccSJCjUNKGgHTTgBaAhHQKAawaVlf7d1fZQoaAZHQG5hGVAzHjpoB01CAWgIR0CgHKE6DGtIdX2UKGgGR0BxTdi5NGmUaAdNkQFoCEdAoB4IctGutHV9lChoBkdAcVu+CK77K2gHTVQBaAhHQKAfJzK9wm51fZQoaAZHQFNMii7CiypoB0vmaAhHQKAgnkzXSSh1fZQoaAZHQG1qRoysS01oB00hAWgIR0CgIZM72cridX2UKGgGR0BKX6KtPpIMaAdL0GgIR0CgIkjRUm2LdX2UKGgGR0BvgV/c32mIaAdNPwFoCEdAoCNeAskIHHV9lChoBkdAbqFSqlxffGgHTUQBaAhHQKAlJAD7qIJ1fZQoaAZHQEbLQNTcZcdoB00AAWgIR0CgJgPf8/D+dX2UKGgGR0Bx6/KuB+WoaAdNSgFoCEdAoCdJUxVQynV9lChoBkdAb6fvfj0cwWgHTWgBaAhHQKApx9JBgNR1fZQoaAZHQHBEYIF/x2BoB01TAWgIR0CgK0fnnuAqdX2UKGgGR0BxoeLUCq6waAdNYAFoCEdAoC0XywwCbXV9lChoBkdAXQc7YChexGgHTegDaAhHQKAyrEWqLjx1fZQoaAZHQHCHACW/rSpoB002AWgIR0CgNGRoRIz4dX2UKGgGR0BwyJuEVWS2aAdNGQFoCEdAoDVSidrftXV9lChoBkdAQ5GVVxS5y2gHS9hoCEdAoDYGhh6SknV9lChoBkdAcHL2a2F36mgHTTQBaAhHQKA3DReC04R1fZQoaAZHQG3T+KbayrxoB00sAWgIR0CgOMCYCyQgdX2UKGgGR0BHmIvi97F9aAdL0GgIR0CgOXAvtdAxdX2UKGgGR0Bs3iBK+SKWaAdNBQFoCEdAoDpHEKmbb3V9lChoBkdAYY3PkaMrE2gHTegDaAhHQKA+PozvZyx1fZQoaAZHQG+0LsrupjtoB01vAWgIR0CgQAkgntv5dX2UKGgGR0BxsY9GI9DAaAdNPwFoCEdAoEEVZLZi/nV9lChoBkdAcfU16Vt4zWgHTQICaAhHQKBCwDIzWPN1fZQoaAZHQHHyEH6dlNFoB00FAWgIR0CgREJJoTPCdX2UKGgGR0BxQTYukDZEaAdNjQJoCEdAoEatIPK+z3V9lChoBkdAcM2LcsUZemgHTXwBaAhHQKBJPR3u/lB1fZQoaAZHQHAOlN5+pfhoB008AWgIR0CgSrP6sQumdX2UKGgGR0Bw8fg75mAcaAdNKAFoCEdAoEwwy6+WW3V9lChoBkdAcX7F85S3s2gHTQQBaAhHQKBNkPrfLs91fZQoaAZHQEEB5X2dupFoB0vNaAhHQKBPqQBgeBB1fZQoaAZHQHGeGWD6FdtoB01PAWgIR0CgUPz+m3vydX2UKGgGR0BjG5z/6wdKaAdN6ANoCEdAoFTwNgBtDXV9lChoBkdAbgUYMOPNmmgHTS0BaAhHQKBV6rvLHMl1fZQoaAZHQG80qXWvr4ZoB00GAWgIR0CgV2t2C/XYdX2UKGgGR0BwR4GdI5HVaAdNQQFoCEdAoFh7HZK3/nV9lChoBkdAb6UQCjk+5mgHTesBaAhHQKBaG5T6zmh1fZQoaAZHQEosJb+tKZloB0vbaAhHQKBbe5jH4oJ1fZQoaAZHQE9gAbQ1JlJoB0viaAhHQKBcPollbvB1fZQoaAZHQHF1iylenhtoB00IAWgIR0CgXRpUgjhUdX2UKGgGR0BwhSy6cy31aAdNEwFoCEdAoF4AD5j6N3V9lChoBkdAbNxrGBFuvWgHTQQBaAhHQKBfgk30f5l1fZQoaAZHQGGBl41P3ztoB03oA2gIR0CgY3YBmwqzdX2UKGgGR0Bws0ogFHJ+aAdNKAFoCEdAoGR1D6WPcXV9lChoBkdAbzXNzKcNIGgHTYgBaAhHQKBmLQIldC51fZQoaAZHQD8VAVwgkkdoB0v0aAhHQKBnNhMrVe91fZQoaAZHQHCHE8eS0ShoB00sAWgIR0CgaZonSfDldX2UKGgGR0BwK8qAjIJaaAdNNwFoCEdAoGsepS75EnV9lChoBkdAWm1lNDc/MWgHTegDaAhHQKBwR3BYV7B1fZQoaAZHQHDsk96kZaVoB01hAWgIR0CgcWiSJTESdX2UKGgGR0BvZqI+GGmDaAdNcQFoCEdAoHNXLvCuU3V9lChoBkdAcIK6S1Vo6GgHTW4BaAhHQKB0izkZJkJ1fZQoaAZHQGuRNhd+ocdoB02GAWgIR0CgddeY+jdpdX2UKGgGR0BwtaCTUy57aAdNGAFoCEdAoHd70QK8c3V9lChoBkdAcQa5CWu5jGgHTS4BaAhHQKB4eSRr8BN1fZQoaAZHQGyXJZGKAJ9oB03KAWgIR0CgefRXfZVXdX2UKGgGR0BvBYPsiSq3aAdNLgFoCEdAoHub987ZF3V9lChoBkdAcaq8TSLIgmgHTS4BaAhHQKB8lRCQcPx1fZQoaAZHQHILpTqB3A5oB02PAWgIR0Cgfd2SlnAZdX2UKGgGR0Bt9K5kK/mDaAdNFQFoCEdAoH9iZx7zCnV9lChoBkdAb8q7HyVfNWgHTS4BaAhHQKCAWr5qM3t1fZQoaAZHQF9ObfgrH2hoB03oA2gIR0CghL3kgfU4dX2UKGgGR0BwgPm4iHIqaAdNGgFoCEdAoIX26f8Mu3V9lChoBkdAcDk2A5JbuGgHTWABaAhHQKCIneLvTgF1fZQoaAZHQHDkWN70Fr5oB00rAWgIR0CgijFfAsTWdX2UKGgGR0BwNPpwCKaYaAdNLgFoCEdAoIvGnQ6ZIHV9lChoBkdAKEQOOKfnOmgHS81oCEdAoIzZKxs2vXV9lChoBkdAOue18b70nWgHS8loCEdAoI6xuuRs/XV9lChoBkdAcM/K2a2F4GgHTXwBaAhHQKCQB2/zreJ1fZQoaAZHQFD+WY4Qz1toB0v+aAhHQKCQ5ZDArQR1fZQoaAZHQG+rn0K7ZnNoB00nAmgIR0Cgk6PKlpGndX2UKGgGR0BwOMMSbpeNaAdNFQFoCEdAoJSbYh+vyXV9lChoBkdAcMucL0BfbGgHTToBaAhHQKCVr3Zf2K51fZQoaAZHQHCtbtmcvuhoB00qAWgIR0Cgl1c5CF9KdX2UKGgGR0Bwh3LTx5LRaAdNbQFoCEdAoJiI2uPmxXV9lChoBkdAa0/W3jMmnmgHTQ4BaAhHQKCZakM1CPZ1fZQoaAZHQHLwY9LYf4hoB01oAWgIR0Cgm0e5vtMPdX2UKGgGR0BuYNXLeQ+2aAdNEAFoCEdAoJwptrKvFHV9lChoBkdAcUHzNUwSJ2gHTWsBaAhHQKCdYc+7lJZ1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:887ae057838cf72c092732737002073ed7b0051aeecb50b495e3c412d33ea4c8
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cc4fef9615b9bc03b16be6d6f8746ee3d63c2cc2068f8b1e8bc8713841dd874
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (158 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 237.54361749999998, "std_reward": 61.17527941291605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-04T12:15:32.235716"}
|