tainc commited on
Commit
79128e6
1 Parent(s): a3b557c

update links from sgnlp to sgnlp-models

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -126,13 +126,13 @@ from sgnlp.models.span_extraction import (
126
 
127
  # Load model
128
  config = RecconSpanExtractionConfig.from_pretrained(
129
- "https://storage.googleapis.com/sgnlp/models/reccon_span_extraction/config.json"
130
  )
131
  tokenizer = RecconSpanExtractionTokenizer.from_pretrained(
132
  "mrm8488/spanbert-finetuned-squadv2"
133
  )
134
  model = RecconSpanExtractionModel.from_pretrained(
135
- "https://storage.googleapis.com/sgnlp/models/reccon_span_extraction/pytorch_model.bin",
136
  config=config,
137
  )
138
  preprocessor = RecconSpanExtractionPreprocessor(tokenizer)
@@ -171,8 +171,8 @@ The train and evaluation datasets were derived from the RECCON dataset. The full
171
  - **Training Time:** ~3 hours for 12 epochs on a single V100 GPU.
172
 
173
  # Model Parameters
174
- - **Model Weights:** [link](https://storage.googleapis.com/sgnlp/models/reccon_span_extraction/pytorch_model.bin)
175
- - **Model Config:** [link](https://storage.googleapis.com/sgnlp/models/reccon_span_extraction/config.json)
176
  - **Model Inputs:** Target utterance, emotion in target utterance, evidence utterance and conversational history.
177
  - **Model Outputs:** Array of start logits and array of end logits. These 2 arrays can be post processed to detemine the start and end of the causal span.
178
  - **Model Size:** ~411MB
 
126
 
127
  # Load model
128
  config = RecconSpanExtractionConfig.from_pretrained(
129
+ "https://storage.googleapis.com/sgnlp-models/models/reccon_span_extraction/config.json"
130
  )
131
  tokenizer = RecconSpanExtractionTokenizer.from_pretrained(
132
  "mrm8488/spanbert-finetuned-squadv2"
133
  )
134
  model = RecconSpanExtractionModel.from_pretrained(
135
+ "https://storage.googleapis.com/sgnlp-models/models/reccon_span_extraction/pytorch_model.bin",
136
  config=config,
137
  )
138
  preprocessor = RecconSpanExtractionPreprocessor(tokenizer)
 
171
  - **Training Time:** ~3 hours for 12 epochs on a single V100 GPU.
172
 
173
  # Model Parameters
174
+ - **Model Weights:** [link](https://storage.googleapis.com/sgnlp-models/models/reccon_span_extraction/pytorch_model.bin)
175
+ - **Model Config:** [link](https://storage.googleapis.com/sgnlp-models/models/reccon_span_extraction/config.json)
176
  - **Model Inputs:** Target utterance, emotion in target utterance, evidence utterance and conversational history.
177
  - **Model Outputs:** Array of start logits and array of end logits. These 2 arrays can be post processed to detemine the start and end of the causal span.
178
  - **Model Size:** ~411MB