update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: mt5-base-wikinewssum-english-100
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mt5-base-wikinewssum-english-100
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 6.6225
|
21 |
+
- Rouge1: 3.909
|
22 |
+
- Rouge2: 0.9312
|
23 |
+
- Rougel: 3.3835
|
24 |
+
- Rougelsum: 3.7786
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5.6e-05
|
44 |
+
- train_batch_size: 4
|
45 |
+
- eval_batch_size: 4
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 2
|
48 |
+
- total_train_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
57 |
+
| No log | 0.96 | 12 | 14.4949 | 2.7398 | 0.7181 | 2.491 | 2.6561 |
|
58 |
+
| No log | 1.96 | 24 | 10.5056 | 4.4428 | 1.4293 | 3.8469 | 4.2869 |
|
59 |
+
| No log | 2.96 | 36 | 8.9856 | 4.1179 | 1.229 | 3.5726 | 3.9693 |
|
60 |
+
| No log | 3.96 | 48 | 7.7950 | 3.9217 | 1.1339 | 3.4256 | 3.7905 |
|
61 |
+
| No log | 4.96 | 60 | 7.0734 | 3.8004 | 1.0326 | 3.3246 | 3.6766 |
|
62 |
+
| No log | 5.96 | 72 | 6.7897 | 3.6351 | 0.9162 | 3.1839 | 3.5149 |
|
63 |
+
| No log | 6.96 | 84 | 6.6610 | 3.7486 | 0.8829 | 3.2583 | 3.6193 |
|
64 |
+
| No log | 7.96 | 96 | 6.6225 | 3.909 | 0.9312 | 3.3835 | 3.7786 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.13.0
|
70 |
+
- Pytorch 1.10.1
|
71 |
+
- Datasets 1.16.1
|
72 |
+
- Tokenizers 0.10.3
|