forbiddensoul90 commited on
Commit
9d885b0
·
verified ·
1 Parent(s): 5f87ea2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -202
README.md CHANGED
@@ -1,202 +1,129 @@
1
- ---
2
- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.13.2
 
1
+ ---
2
+ base_model: meta-llama/Llama-3.1-8B-Instruct
3
+ tags:
4
+ - text-generation-inference
5
+ - transformers
6
+ - unsloth
7
+ - llama
8
+ - trl
9
+ license: apache-2.0
10
+ language:
11
+ - lb
12
+ - en
13
+ ---
14
+ # Lux-Llama
15
+
16
+ This repository contains a fine-tuned version of the Llama-3.1-8B-Instruct model, specifically adapted for Luxembourgish. The fine-tuning was performed using LoRA (Low-Rank Adaptation) on a dataset crafted to generate Chain-of-Thought (CoT) reasoning in Luxembourgish. The fine-tuning process utilized the computational resources provided by [Meluxina](https://www.luxprovide.lu/meluxina), a high-performance computing (HPC) platform operated by LuxProvide.
17
+
18
+ ## Model Overview
19
+ - **Base Model:** Llama-3.1-8B-Instruct
20
+ - **Fine-Tuning Method:** LoRA (Low-Rank Adaptation)
21
+ - **Dataset:** Luxembourgish Chain-of-Thought (CoT) dataset
22
+ - **Compute Platform:** Meluxina by LuxProvide
23
+ - **Fine-Tuning Framework:** [Unsloth](https://github.com/unsloth/unsloth)
24
+ - **Status:** Early release. The model and dataset are still being improved, and feedback is welcome.
25
+
26
+ ## About Meluxina
27
+ [Meluxina](https://www.luxprovide.lu/meluxina) is Luxembourg's national supercomputer, launched in June 2021 by LuxProvide. It is built on the EVIDEN BullSequana XH2000 platform and provides:
28
+ - **18 PetaFlops** of computing power.
29
+ - **20 PetaBytes** of storage capacity.
30
+ - A **scalable architecture** integrating simulation, modeling, data analytics, and AI.
31
+
32
+ Meluxina was ranked 36th globally and recognized as the greenest supercomputer in the EU within the Top500 ranking. Named after Luxembourg's legend of the mermaid Melusina, it symbolizes digital innovation and employs water-cooling technology for energy efficiency.
33
+
34
+ ## Features
35
+ - **Language:** Luxembourgish
36
+ - **Specialization:** Reasoning for complex problem-solving and step-by-step explanations.
37
+ - **Efficiency:** LoRA fine-tuning ensures minimal computational overhead while maintaining high performance.
38
+
39
+ ## Installation
40
+ To use the fine-tuned model, ensure you have the following dependencies installed:
41
+
42
+ ```python
43
+ %%capture
44
+ !pip install unsloth
45
+ # Also get the latest nightly Unsloth!
46
+ !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git
47
+ ```
48
+
49
+ You can then load the model as follows:
50
+
51
+ ```python
52
+ from unsloth import FastLanguageModel
53
+ import torch
54
+ from transformers import TextStreamer
55
+
56
+ model, tokenizer = FastLanguageModel.from_pretrained(
57
+ model_name = "aiplanet/Lux-Llama",
58
+ max_seq_length = 8192,
59
+ dtype = None,
60
+ load_in_4bit = True,
61
+ )
62
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
63
+
64
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
65
+ ### Instruction:
66
+ {}
67
+ ### Input:
68
+ {}
69
+ ### Output:
70
+ {}"""
71
+
72
+ inputs = tokenizer(
73
+ [
74
+ alpaca_prompt.format(
75
+ "Proposéiert mir en neit Rezept mat Eeër a Brout", # instruction
76
+ "", # input
77
+ "", # output - leave this blank for generation!
78
+ )
79
+ ], return_tensors = "pt").to("cuda")
80
+
81
+ text_streamer = TextStreamer(tokenizer)
82
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 2048)
83
+ ```
84
+
85
+ Output:
86
+
87
+ ```python
88
+ # Sécher! Hei ass e leckert Rezept dat Eeër a Brout kombinéiert: Brout Eeër Frittata Mat dësem Rezept kënnt Dir e leckere Brout Eeër Frittata maachen, perfekt fir e früh Moien Frühstück oder e leckeren Snack.
89
+
90
+ # Zutaten:
91
+ # - 4 grouss Eeër
92
+ # - 1/2 Coupe geschnidden Brout
93
+ # - 1/2 Coupe gerappte Cheddar Kéis
94
+ # - 1/2 Coupe gerappte Parmesan Kéis
95
+ # - 1/4 Coupe gerappte Mozzarella Kéis
96
+ # - 1/4 Coupe gehackte frësche Petersilie
97
+ # - Salz a Peffer fir ze schmaachen
98
+ # - 2 Esslöffel Olivenueleg
99
+
100
+ # Instruktioune:
101
+ # 1. Den Ofen op 375 ° F (190 ° C) virhëtzen.
102
+ # 2. An enger grousser Schossel, d'Eeër, d'Brout, d'Cheddar Kéis, d'Parmesan Kéis, d'Mozzarella Kéis, d'Petersilie, Salz a Peffer mëschen.
103
+ # 3. Huelt eng 9-Zoll (23 cm) Liewensmëttel Schossel a fëllt se mat der Eeër Mëschung.
104
+ # 4. Dréckt d'Schossel mat Olivenueleg.
105
+ # 5. Bake fir ongeféier 35-40 Minutten, oder bis d'Eeër voll gekacht sinn a d'Brout e liicht brong ass.
106
+ # 6. Huelt de Frittata aus dem Ofen a léisst et e puer Minutten ofkillen ier Dir et servéiert.
107
+ # Genéisst Är lecker Brout Eeër Frittata!
108
+ ```
109
+
110
+ ## Fine-Tuning Process
111
+ 1. **Framework:** The fine-tuning was conducted using [Unsloth](https://github.com/unsloth/unsloth), a LoRA-based fine-tuning library.
112
+ 2. **Steps:**
113
+ - Initialized the Llama-3.1-8B-Instruct model.
114
+ - Applied LoRA adapters for efficient training.
115
+ - Fine-tuned using the Luxembourgish CoT dataset on the Meluxina HPC cluster.
116
+ 3. **Hardware:** High-performance A100 GPUs provided by Meluxina ensured rapid convergence.
117
+
118
+ ## Dataset Description
119
+ - *Under progress*
120
+
121
+ ## Benchmarking
122
+ - *Under progress*
123
+
124
+ ## Acknowledgments
125
+ This work leverages computational resources and support from [Meluxina](https://www.luxprovide.lu/meluxina) by LuxProvide.
126
+
127
+ <img src="https://www.luxprovide.lu/wp-content/themes/luxprovide2023/public/images/logo/logo_notagline_color_blue.4b07cb.svg" alt="LuxProvide Logo" width="50%">
128
+
129
+ <img src="https://docs.lxp.lu/FAQ/images/MeluXina_Logo.png" alt="Meluxina Logo" width="50%">