alfredplpl
commited on
Commit
•
6213110
1
Parent(s):
c37f874
Update README.md
Browse files
README.md
CHANGED
@@ -87,29 +87,13 @@ Use the code below to get started with the model.
|
|
87 |
## Training Details
|
88 |
|
89 |
### Training Data
|
|
|
90 |
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
[More Information Needed]
|
94 |
-
|
95 |
-
### Training Procedure
|
96 |
-
|
97 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
98 |
-
|
99 |
-
#### Preprocessing [optional]
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
|
104 |
-
#### Training Hyperparameters
|
105 |
-
|
106 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
107 |
-
|
108 |
-
#### Speeds, Sizes, Times [optional]
|
109 |
-
|
110 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
|
114 |
## Environmental Impact
|
115 |
|
@@ -117,32 +101,30 @@ Use the code below to get started with the model.
|
|
117 |
|
118 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
119 |
|
120 |
-
- **Hardware Type:**
|
121 |
-
- **Hours used:**
|
122 |
-
- **Cloud Provider:**
|
123 |
-
- **Compute Region:**
|
124 |
-
- **Carbon Emitted:**
|
125 |
|
126 |
-
## Technical Specifications
|
127 |
|
128 |
### Model Architecture and Objective
|
129 |
|
130 |
-
[
|
131 |
|
132 |
### Compute Infrastructure
|
133 |
|
134 |
-
|
135 |
|
136 |
#### Hardware
|
137 |
|
138 |
-
|
139 |
|
140 |
#### Software
|
141 |
|
142 |
-
[
|
143 |
-
|
144 |
-
[More Information Needed]
|
145 |
|
146 |
## Model Card Contact
|
147 |
|
148 |
-
[
|
|
|
87 |
## Training Details
|
88 |
|
89 |
### Training Data
|
90 |
+
We used these dataset to train the diffusion transformer:
|
91 |
|
92 |
+
- [CommonCatalog-cc-by](https://huggingface.co/datasets/common-canvas/commoncatalog-cc-by)
|
93 |
+
- [Megalith-10M](https://huggingface.co/datasets/madebyollin/megalith-10m)
|
94 |
+
- [Smithonian Open Access](https://huggingface.co/datasets/madebyollin/soa-full)
|
95 |
+
- [ArtBench (CC-0 only) ](https://huggingface.co/datasets/alfredplpl/artbench-pd-256x256)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
## Environmental Impact
|
99 |
|
|
|
101 |
|
102 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
103 |
|
104 |
+
- **Hardware Type:** NVIDIA L4
|
105 |
+
- **Hours used:** 20000
|
106 |
+
- **Cloud Provider:** Google Cloud
|
107 |
+
- **Compute Region:** Japan
|
108 |
+
- **Carbon Emitted:** free
|
109 |
|
110 |
+
## Technical Specifications
|
111 |
|
112 |
### Model Architecture and Objective
|
113 |
|
114 |
+
[Pixart-Σ based architecture](https://github.com/PixArt-alpha/PixArt-sigma)
|
115 |
|
116 |
### Compute Infrastructure
|
117 |
|
118 |
+
Google Cloud (Tokyo Region).
|
119 |
|
120 |
#### Hardware
|
121 |
|
122 |
+
We used NVIDIA L4x8 instance 4 nodes. (Total: L4x32)
|
123 |
|
124 |
#### Software
|
125 |
|
126 |
+
[Pixart-Σ based code](https://github.com/PixArt-alpha/PixArt-sigma)
|
|
|
|
|
127 |
|
128 |
## Model Card Contact
|
129 |
|
130 |
+
[AI Picasso, Inc.](support@aipicasso.app)
|