Update readme
Browse files
README.md
CHANGED
@@ -24,18 +24,81 @@ During training, the model is prompted with NER labels and optimized to output t
|
|
24 |
---------
|
25 |
|
26 |
## Training Details
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
---------
|
32 |
|
33 |
## Usage
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
---------
|
25 |
|
26 |
## Training Details
|
27 |
+
`aiola/whisper-ner-v1` was trained on the Nuner dataset to perform audio translation with ner at the same time in English only.
|
|
|
|
|
28 |
|
29 |
---------
|
30 |
|
31 |
## Usage
|
32 |
+
To use `whisper-ner-v1` install [`whisper-ner`](https://github.com/aiola-lab/whisper-ner) repo following the README instructions.
|
33 |
+
|
34 |
+
Inference can be done using the following code:
|
35 |
+
```python
|
36 |
+
import logging
|
37 |
+
import argparse
|
38 |
+
import torch
|
39 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
40 |
+
from experiments.utils import set_logger, get_device, remove_suppress_tokens
|
41 |
+
from experiments.utils.utils import UNSUPPRESS_TOKEN
|
42 |
+
import torchaudio
|
43 |
+
import numpy as np
|
44 |
+
set_logger()
|
45 |
+
|
46 |
+
|
47 |
+
@torch.no_grad()
|
48 |
+
def main(model_path, audio_file_path, prompt, max_new_tokens, language, device):
|
49 |
+
# load model and processor from pre-trained
|
50 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
51 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_path)
|
52 |
+
remove_suppress_tokens(model)
|
53 |
+
logging.info(f"removed suppress tokens: {UNSUPPRESS_TOKEN}")
|
54 |
+
|
55 |
+
model = model.to(device)
|
56 |
+
|
57 |
+
# load audio file: user is responsible for loading the audio files themselves
|
58 |
+
target_sample_rate = 16000
|
59 |
+
signal, sampling_rate = torchaudio.load(audio_file_path)
|
60 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, target_sample_rate)
|
61 |
+
signal = resampler(signal)
|
62 |
+
# convert to mono or remove first dim if needed
|
63 |
+
if signal.ndim == 2:
|
64 |
+
signal = torch.mean(signal, dim=0)
|
65 |
+
# pre-process to get the input features
|
66 |
+
input_features = processor(signal, sampling_rate=target_sample_rate, return_tensors="pt").input_features
|
67 |
+
input_features = input_features.to(device)
|
68 |
+
|
69 |
+
prompt = prompt.lower() # lowercase the prompt, to align with training
|
70 |
+
|
71 |
+
prompt_ids = processor.get_prompt_ids(prompt, return_tensors="pt")
|
72 |
+
prompt_ids = prompt_ids.to(device)
|
73 |
+
|
74 |
+
# generate token ids by running model forward sequentially
|
75 |
+
logging.info(f"Inference with prompt: '{prompt}'.")
|
76 |
+
predicted_ids = model.generate(
|
77 |
+
input_features, max_new_tokens=max_new_tokens, language=language,
|
78 |
+
prompt_ids=prompt_ids, generation_config=model.generation_config
|
79 |
+
)
|
80 |
+
|
81 |
+
# post-process token ids to text
|
82 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
83 |
+
print(transcription)
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
parser = argparse.ArgumentParser(description="Transcribe audio using Whisper model.")
|
88 |
+
parser.add_argument('--model-path', type=str,
|
89 |
+
required=True,
|
90 |
+
default="aiola/whisper-ner-v1",
|
91 |
+
help='Path to the pre-trained model components.')
|
92 |
+
parser.add_argument('--audio-file-path',
|
93 |
+
type=str,
|
94 |
+
required=True,
|
95 |
+
help='Path to the audio file to transcribecd.')
|
96 |
+
parser.add_argument('--prompt', type=str, default='father', help='Prompt text to guide the transcription.')
|
97 |
+
parser.add_argument('--max-new-tokens', type=int, default=256, help='Maximum number of new tokens to generate.')
|
98 |
+
parser.add_argument('--language', type=str, default='en', help='Language code for the transcription.')
|
99 |
+
|
100 |
+
args = parser.parse_args()
|
101 |
+
device = get_device()
|
102 |
+
main(args.model_path, args.audio_file_path, args.prompt, args.max_new_tokens, args.language, device)
|
103 |
+
|
104 |
+
```
|