HumanStandardInputFlowModule / HumanStandardInputFlow.py
nbaldwin's picture
fix of target
94f4b7d
raw
history blame
7.19 kB
from copy import deepcopy
from typing import Dict, Any
import hydra
from aiflows.prompt_template import JinjaPrompt
from aiflows.base_flows import AtomicFlow
from aiflows.messages import UpdateMessage_Generic
from aiflows.utils import logging
from aiflows.messages import FlowMessage
# logging.set_verbosity_debug() # ToDo: Has no effect on the logger for __name__. Level is warn, and info is not printed
log = logging.get_logger(f"aiflows.{__name__}") # ToDo: Is there a better fix?
class HumanStandardInputFlow(AtomicFlow):
""" This class implements a HumanStandardInputFlow. It's used to read input from the user/human. Typically used to get feedback from the user/human.
*Configuration Parameters*:
- `name` (str): The name of the flow.
- `description` (str): A description of the flow. This description is used to generate the help message of the flow.
Default: "Reads input from the user's standard input."
- `request_multi_line_input_flag` (bool): If True, the user/human is requested to enter a multi-line input.
If False, the user/human is requested to enter a single-line input. Default: No defaul, this parameter is required.
- `end_of_input_string` (str): The string that the user/human should enter to indicate that the input is finished.
This parameter is only used if "request_multi_line_input_flag" is True. Default: "EOI"
- `query_message_prompt_template` (JinjaPrompt): The prompt template used to generate the query message. By default its of type aiflows.prompt_template.JinjaPrompt.
None of the parameters of the prompt are defined by default and therefore need to be defined if one wants to use the init_human_message_prompt_template. Default parameters are defined in
aiflows.prompt_template.jinja2_prompts.JinjaPrompt.
- The other parameters are inherited from the default configuration of AtomicFlow (see AtomicFlow)
*input_interface*:
- No Input Interface. By default, the input interface expects no input. But if inputs are expected from the query_message_prompt_template,then the input interface should contain the keys specified in the input_variables of the query_message_prompt_template.
*output_interface*:
- `human_input` (str): The message inputed from the user/human.
:param query_message_prompt_template: The prompt template used to generate the query message. Expected if the class is instantiated programmatically.
:type query_message_prompt_template: JinjaPrompt
:param \**kwargs: The keyword arguments passed to the AtomicFlow constructor. Use to create the flow_config. Includes request_multi_line_input_flag, end_of_input_string, input_keys, description of Configuration Parameters.
:type \**kwargs: Dict[str, Any]
"""
REQUIRED_KEYS_CONFIG = ["request_multi_line_input_flag"]
query_message_prompt_template: JinjaPrompt = None
__default_flow_config = {
"_target_": "flow_modules.aiflows.HumanStandardInputFlowModule.HumanStandardInputFlow.instantiate_from_config",
"name": "HumanStandardInput",
"end_of_input_string": "EOI",
"description": "Reads input from the user's standard input.",
"query_message_prompt_template": {
"_target_": "aiflows.prompt_template.JinjaPrompt",
"template": "",
"input_variables": [],
"partial_variables": {},
}
}
def __init__(self, query_message_prompt_template, **kwargs):
super().__init__(**kwargs)
self.query_message_prompt_template = query_message_prompt_template
@classmethod
def _set_up_prompts(cls, config):
""" Instantiates the prompt templates from the config.
:param config: The configuration of the flow.
:type config: Dict[str, Any]
:return: A dictionary of keyword arguments to pass to the constructor of the flow.
"""
kwargs = {}
kwargs["query_message_prompt_template"] = \
hydra.utils.instantiate(config['query_message_prompt_template'], _convert_="partial")
return kwargs
@classmethod
def instantiate_from_config(cls, config):
""" Instantiates the flow from a config file.
:param config: The configuration of the flow.
:type config: Dict[str, Any]
"""
flow_config = deepcopy(config)
kwargs = {"flow_config": flow_config}
# ~~~ Set up prompts ~~~
kwargs.update(cls._set_up_prompts(flow_config))
# ~~~ Instantiate flow ~~~
return cls(**kwargs)
@staticmethod
def _get_message(prompt_template, input_data: Dict[str, Any]):
""" Returns the message content given the prompt template and the input data.
:param prompt_template: The prompt template.
:type prompt_template: JinjaPrompt
:param input_data: The input data.
:type input_data: Dict[str, Any]
:return: The message content.
"""
template_kwargs = {}
for input_variable in prompt_template.input_variables:
template_kwargs[input_variable] = input_data[input_variable]
msg_content = prompt_template.format(**template_kwargs)
return msg_content
def _read_input(self):
""" Reads the input from the user/human's standard input.
:return: The input read from the user/human's standard input.
:rtype: str
"""
if not self.flow_config["request_multi_line_input_flag"]:
log.info("Please enter you single-line response and press enter.")
human_input = input()
return human_input
end_of_input_string = self.flow_config["end_of_input_string"]
log.info(f"Please enter your multi-line response below. "
f"To submit the response, write `{end_of_input_string}` on a new line and press enter.")
content = []
while True:
line = input()
if line == self.flow_config["end_of_input_string"]:
break
content.append(line)
human_input = "\n".join(content)
return human_input
def run(self,
input_message: FlowMessage):
""" Runs the HumanStandardInputFlow. It's used to read input from the user/human's standard input.
:param input_message: The input message
:type input_message: FlowMessage
"""
input_data = input_message.data
query_message = self._get_message(self.query_message_prompt_template, input_data)
state_update_message = UpdateMessage_Generic(
created_by=self.flow_config['name'],
updated_flow=self.flow_config["name"],
data={"query_message": query_message},
)
self._log_message(state_update_message)
log.info(query_message)
human_input = self._read_input()
reply_message = self.package_output_message(
input_message = input_message,
response = {"human_input": human_input}
)
self.send_message(reply_message)