Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.61 +/- 0.16
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9a9feb495447ae9f556ff393ba87ff7b17ade693dab12d172d25b22851f8367
|
3 |
+
size 109875
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -41,24 +43,24 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[-
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f399c067560>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f399c14adb0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 1000000,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1679114795037537237,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDU9tk+ChzmOW2tCT/U9tk+ChzmOW2tCT/U9tk+ChzmOW2tCT/U9tk+ChzmOW2tCT+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMEL3w7/xq5C/O2krPyg7z7/j4DM/XeDbv8CB0r/b36o++r3Sv2MIi74oNp2/xBOCvpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2DU9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT3U9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT3U9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT3U9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT2UdJRidS4=",
|
61 |
+
"achieved_goal": "[[4.2571127e-01 4.3889909e-04 5.3780252e-01]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01]]",
|
62 |
+
"desired_goal": "[[-1.5309832 -1.1302472 0.66957444]\n [-1.6189928 0.70265025 -1.7177845 ]\n [-1.6445847 0.33373913 -1.6464226 ]\n [-0.27154836 -1.2282152 -0.25405705]]",
|
63 |
+
"observation": "[[4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMCzw2j3373A96u99PvmX/7xXm1g9vwGHPgxxD75PnQK+xtw1PvzHaT18ToY9mH0NPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.1069034 0.0588226 0.24798551]\n [-0.0312004 0.05288252 0.2636852 ]\n [-0.14007968 -0.12755321 0.1776 ]\n [ 0.05707549 0.06557938 0.13817441]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILV3BNuJJ5b+UhpRSlIwBbJRLMowBdJRHQKT6z9MsYl91fZQoaAZoCWgPQwgVUn5S7dPlv5SGlFKUaBVLMmgWR0Ck+oz3Zf2LdX2UKGgGaAloD0MIvfvjvWpl1b+UhpRSlGgVSzJoFkdApPpKClJpWXV9lChoBmgJaA9DCPs6cM6I0uS/lIaUUpRoFUsyaBZHQKT6AVt4zJp1fZQoaAZoCWgPQwhmg0wycpbnv5SGlFKUaBVLMmgWR0Ck/W4150KadX2UKGgGaAloD0MIEtkHWRbM67+UhpRSlGgVSzJoFkdApP0pkEs8PnV9lChoBmgJaA9DCPuSjQdb7OG/lIaUUpRoFUsyaBZHQKT85NFBppN1fZQoaAZoCWgPQwjzkv/J3z34v5SGlFKUaBVLMmgWR0Ck/Jxj8UEgdX2UKGgGaAloD0MIIHpSJjU05r+UhpRSlGgVSzJoFkdApP6nVurIYHV9lChoBmgJaA9DCBQF+kSeJN2/lIaUUpRoFUsyaBZHQKT+Ye9zwMJ1fZQoaAZoCWgPQwgMPPceLjnlv5SGlFKUaBVLMmgWR0Ck/hxcmjTKdX2UKGgGaAloD0MIX2HB/YAH37+UhpRSlGgVSzJoFkdApP3TC3w1BXV9lChoBmgJaA9DCDEkJxO3Ctu/lIaUUpRoFUsyaBZHQKT/rziCJ411fZQoaAZoCWgPQwg8UKc8upHhv5SGlFKUaBVLMmgWR0Ck/2nNgSezdX2UKGgGaAloD0MIrkm3JXIB8b+UhpRSlGgVSzJoFkdApP8kLv1DjXV9lChoBmgJaA9DCMhe7/54r9a/lIaUUpRoFUsyaBZHQKT+2s+V1Ol1fZQoaAZoCWgPQwhF9dbAVgnov5SGlFKUaBVLMmgWR0ClALhYNiH7dX2UKGgGaAloD0MImX6JeOt86L+UhpRSlGgVSzJoFkdApQByuyNXHXV9lChoBmgJaA9DCHjRV5BmLOS/lIaUUpRoFUsyaBZHQKUALSiudPN1fZQoaAZoCWgPQwiSdTi6Snfqv5SGlFKUaBVLMmgWR0Ck/+PqTr3TdX2UKGgGaAloD0MIODKP/MHA37+UhpRSlGgVSzJoFkdApQHlEiMYM3V9lChoBmgJaA9DCErwhjQq8O6/lIaUUpRoFUsyaBZHQKUBn/lyR0V1fZQoaAZoCWgPQwjtKw/SU2Ttv5SGlFKUaBVLMmgWR0ClAVrPldTpdX2UKGgGaAloD0MIPWTKh6Bq5b+UhpRSlGgVSzJoFkdApQER5AyEc3V9lChoBmgJaA9DCH/C2a1lMt6/lIaUUpRoFUsyaBZHQKUDBR8+ial1fZQoaAZoCWgPQwiHokCfyJPwv5SGlFKUaBVLMmgWR0ClAr+X7cfvdX2UKGgGaAloD0MIAz4/jBAe8b+UhpRSlGgVSzJoFkdApQJ6CHymRHV9lChoBmgJaA9DCJCHvruVJeO/lIaUUpRoFUsyaBZHQKUCMNYKYzB1fZQoaAZoCWgPQwjPpE3VPbLxv5SGlFKUaBVLMmgWR0ClBFd7ngYQdX2UKGgGaAloD0MIMlpHVRPE47+UhpRSlGgVSzJoFkdApQQR3/xUenV9lChoBmgJaA9DCKyL22gAb+u/lIaUUpRoFUsyaBZHQKUDzC2MKkV1fZQoaAZoCWgPQwj1gHnIlI/lv5SGlFKUaBVLMmgWR0ClA4OBUaQ4dX2UKGgGaAloD0MIC5dV2Axw2b+UhpRSlGgVSzJoFkdApQVea+evp3V9lChoBmgJaA9DCE3Ar5EkCOe/lIaUUpRoFUsyaBZHQKUFGO5J9Rd1fZQoaAZoCWgPQwjr/rEQHYLgv5SGlFKUaBVLMmgWR0ClBNNShrWRdX2UKGgGaAloD0MIATEJF/II6r+UhpRSlGgVSzJoFkdApQSKHsTnJXV9lChoBmgJaA9DCAwgfCjRkuO/lIaUUpRoFUsyaBZHQKUGZ3Cbc451fZQoaAZoCWgPQwhjf9k9eVjYv5SGlFKUaBVLMmgWR0ClBiIH9m6HdX2UKGgGaAloD0MIx0j2CDVD1r+UhpRSlGgVSzJoFkdApQXckKNQ03V9lChoBmgJaA9DCGUYd4NoLe2/lIaUUpRoFUsyaBZHQKUFk1WsA/91fZQoaAZoCWgPQwjXpNsSueDmv5SGlFKUaBVLMmgWR0ClB2zAFgUldX2UKGgGaAloD0MIr+3tluSA6r+UhpRSlGgVSzJoFkdApQcnJ3gUDnV9lChoBmgJaA9DCPiov15hwey/lIaUUpRoFUsyaBZHQKUG4U7jkuJ1fZQoaAZoCWgPQwg4glSKHY3zv5SGlFKUaBVLMmgWR0ClBpg0bcXWdX2UKGgGaAloD0MIqpuLv+0J0b+UhpRSlGgVSzJoFkdApQh5uMuOCHV9lChoBmgJaA9DCE8Cm3PwTOO/lIaUUpRoFUsyaBZHQKUINDEWIoF1fZQoaAZoCWgPQwjkgcgiTbzov5SGlFKUaBVLMmgWR0ClB+6yjYZmdX2UKGgGaAloD0MIpP56hQX34r+UhpRSlGgVSzJoFkdApQelPDYRNHV9lChoBmgJaA9DCF/ObFfog+y/lIaUUpRoFUsyaBZHQKUJkcoYvWZ1fZQoaAZoCWgPQwiZvAFmvsPxv5SGlFKUaBVLMmgWR0ClCUxD1GsndX2UKGgGaAloD0MIMKAX7lxY8r+UhpRSlGgVSzJoFkdApQkGqaPS2HV9lChoBmgJaA9DCEgZcQFolN6/lIaUUpRoFUsyaBZHQKUIvVTaTOh1fZQoaAZoCWgPQwheLuI7Mevev5SGlFKUaBVLMmgWR0ClCq5YYBNmdX2UKGgGaAloD0MIFqOutfep2b+UhpRSlGgVSzJoFkdApQpoy2x6fXV9lChoBmgJaA9DCP2jb9I0qPC/lIaUUpRoFUsyaBZHQKUKI9r433p1fZQoaAZoCWgPQwiSW5NuS+Tmv5SGlFKUaBVLMmgWR0ClCdqr7wazdX2UKGgGaAloD0MIq5hKP+Hs37+UhpRSlGgVSzJoFkdApQu65byH23V9lChoBmgJaA9DCNv8v+rIke+/lIaUUpRoFUsyaBZHQKULdTvy9VZ1fZQoaAZoCWgPQwhOC170FaTev5SGlFKUaBVLMmgWR0ClCy+wTufFdX2UKGgGaAloD0MIOBH92vpp4L+UhpRSlGgVSzJoFkdApQrmbgCOm3V9lChoBmgJaA9DCFJkraHU3uO/lIaUUpRoFUsyaBZHQKUM0yO7xut1fZQoaAZoCWgPQwh+NnLdlPLgv5SGlFKUaBVLMmgWR0ClDI2WyC4CdX2UKGgGaAloD0MI28GIfQKo7L+UhpRSlGgVSzJoFkdApQxIEt/WlXV9lChoBmgJaA9DCMMoCB7fXuG/lIaUUpRoFUsyaBZHQKUL/viLl3h1fZQoaAZoCWgPQwjdC8wKRTrkv5SGlFKUaBVLMmgWR0ClDgTs6aLGdX2UKGgGaAloD0MI6pWyDHGs47+UhpRSlGgVSzJoFkdApQ2/g1m8NHV9lChoBmgJaA9DCK4NFeP8Tde/lIaUUpRoFUsyaBZHQKUNecQRPGh1fZQoaAZoCWgPQwhdqWdBKO/jv5SGlFKUaBVLMmgWR0ClDTCbMHKPdX2UKGgGaAloD0MIFceBV8ud1r+UhpRSlGgVSzJoFkdApQ8pkI5YHXV9lChoBmgJaA9DCL+7lSU6y9y/lIaUUpRoFUsyaBZHQKUO5A+pwS91fZQoaAZoCWgPQwgTukvirIjev5SGlFKUaBVLMmgWR0ClDp55qubJdX2UKGgGaAloD0MII9kj1Awp4b+UhpRSlGgVSzJoFkdApQ5VOEdvKnV9lChoBmgJaA9DCHeE04IX/eG/lIaUUpRoFUsyaBZHQKUQNMbm2b51fZQoaAZoCWgPQwj7WpcaoZ/ov5SGlFKUaBVLMmgWR0ClD+9rGipOdX2UKGgGaAloD0MIdlPKayX07L+UhpRSlGgVSzJoFkdApQ+pnDiwS3V9lChoBmgJaA9DCBwnhXmPM+C/lIaUUpRoFUsyaBZHQKUPYHDaXa91fZQoaAZoCWgPQwheDybFxyffv5SGlFKUaBVLMmgWR0ClEYtcnmaIdX2UKGgGaAloD0MIJegv9IjR87+UhpRSlGgVSzJoFkdApRFGOU+s5nV9lChoBmgJaA9DCAIPDCB8aPW/lIaUUpRoFUsyaBZHQKURATgVGkN1fZQoaAZoCWgPQwik+s4vStDpv5SGlFKUaBVLMmgWR0ClELjh1klNdX2UKGgGaAloD0MIDFnd6jnp6b+UhpRSlGgVSzJoFkdApRK2K/EfknV9lChoBmgJaA9DCCZvgJnv4Nu/lIaUUpRoFUsyaBZHQKUScLAHmih1fZQoaAZoCWgPQwjKwWwCDEviv5SGlFKUaBVLMmgWR0ClEisxGlQ/dX2UKGgGaAloD0MIcHhBRGpa47+UhpRSlGgVSzJoFkdApRHh7JGOMnV9lChoBmgJaA9DCDenkgGgCvO/lIaUUpRoFUsyaBZHQKUTv1oQFs51fZQoaAZoCWgPQwiYofFEEGfiv5SGlFKUaBVLMmgWR0ClE3nl4keIdX2UKGgGaAloD0MImBjL9EvE5b+UhpRSlGgVSzJoFkdApRM0hib2DnV9lChoBmgJaA9DCMTouYWuROe/lIaUUpRoFUsyaBZHQKUS6zk6tDF1fZQoaAZoCWgPQwiYNEbrqGrsv5SGlFKUaBVLMmgWR0ClFL02tMfzdX2UKGgGaAloD0MILC6Oyk3U47+UhpRSlGgVSzJoFkdApRR3hGYrrnV9lChoBmgJaA9DCP60UZ0OZOq/lIaUUpRoFUsyaBZHQKUUMdS2php1fZQoaAZoCWgPQwi+wRcmUwXkv5SGlFKUaBVLMmgWR0ClE+iGvfTDdX2UKGgGaAloD0MI9l/nps246b+UhpRSlGgVSzJoFkdApRXAikfs/3V9lChoBmgJaA9DCMxDpnwIqta/lIaUUpRoFUsyaBZHQKUVexVyWAx1fZQoaAZoCWgPQwipEfqZet3iv5SGlFKUaBVLMmgWR0ClFTV6/qPfdX2UKGgGaAloD0MI0T3rGi2H7L+UhpRSlGgVSzJoFkdApRTsLjPv8nV9lChoBmgJaA9DCIs2x7lNuNO/lIaUUpRoFUsyaBZHQKUW7Xg9/z91fZQoaAZoCWgPQwiocW9+w8Tnv5SGlFKUaBVLMmgWR0ClFqjDCP6sdX2UKGgGaAloD0MIe7/Rjht+4b+UhpRSlGgVSzJoFkdApRZi6H0sfHV9lChoBmgJaA9DCFu1a0JaY9a/lIaUUpRoFUsyaBZHQKUWGaya/h51ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:843287c299068c3272e87eacc037e6fdd630cd2394d1ccb051c3f4463d26e71e
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af93146ae665343fb801deb5e329e5803a8fa659a04b1cb842edd457c819a9a6
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f595ab6a560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f595ac4ed80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679108753686302291, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzB38QI/QbuVPW0lgj538QI/QbuVPW0lgj538QI/QbuVPW0lgj538QI/QbuVPW0lgj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMPMOfL9f2ls/5P+7vw4ezL+TD4G8Vtm8vkCTjb9S5vu+Bw+YvwN7sb/qdM+/PfIKv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2B38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDyUdJRidS4=", "achieved_goal": "[[0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]]", "desired_goal": "[[-0.9846031 0.8588008 -1.4687467 ]\n [-1.5946672 -0.0157545 -0.36884564]\n [-1.1060562 -0.49199158 -1.1879586 ]\n [-1.3865665 -1.6207554 -0.54275876]]", "observation": "[[0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMD0+fr0972A90tEZPiZ36z2XWQK+i8DyPeprlL2cpPS98ysbPngtmr0+6Bi+C4LtPZR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06207107 0.05491566 0.15021446]\n [ 0.11497335 -0.12729488 0.11853131]\n [-0.07247145 -0.11945459 0.15153484]\n [-0.07528204 -0.14932343 0.11597069]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF5tWCoHMFMCUhpRSlIwBbJRLMowBdJRHQLPuSTYukDZ1fZQoaAZoCWgPQwipTZzc7zAcwJSGlFKUaBVLMmgWR0Cz7iaNAC4jdX2UKGgGaAloD0MIt+ulKQKcEMCUhpRSlGgVSzJoFkdAs+4Df/FR53V9lChoBmgJaA9DCDmdZKvLOS7AlIaUUpRoFUsyaBZHQLPt4MhX8wZ1fZQoaAZoCWgPQwjjNEQV/jQhwJSGlFKUaBVLMmgWR0Cz7sn6MzdldX2UKGgGaAloD0MIueLiqNyMJMCUhpRSlGgVSzJoFkdAs+6neaa1C3V9lChoBmgJaA9DCKnCn+HN6i7AlIaUUpRoFUsyaBZHQLPuhGIbfgt1fZQoaAZoCWgPQwiZEHNJ1WYZwJSGlFKUaBVLMmgWR0Cz7mG2w3YMdX2UKGgGaAloD0MIJAwDllzFJ8CUhpRSlGgVSzJoFkdAs+9ITzundnV9lChoBmgJaA9DCPPK9baZqhTAlIaUUpRoFUsyaBZHQLPvJaNuLrJ1fZQoaAZoCWgPQwjmP6Tfvv4xwJSGlFKUaBVLMmgWR0Cz7wKLbYbsdX2UKGgGaAloD0MI7wIlBRZQGcCUhpRSlGgVSzJoFkdAs+7f6JqIrXV9lChoBmgJaA9DCIbI6ev5WibAlIaUUpRoFUsyaBZHQLPvykgwGnp1fZQoaAZoCWgPQwimRBK9jMogwJSGlFKUaBVLMmgWR0Cz76fOyE+QdX2UKGgGaAloD0MIGt1B7EwBMMCUhpRSlGgVSzJoFkdAs++Euh9LH3V9lChoBmgJaA9DCI8ZqIx/XyPAlIaUUpRoFUsyaBZHQLPvYdeIEbJ1fZQoaAZoCWgPQwhS81XysTsZwJSGlFKUaBVLMmgWR0Cz8ESrksBidX2UKGgGaAloD0MICTauf9e3GcCUhpRSlGgVSzJoFkdAs/Ah/qgRLHV9lChoBmgJaA9DCELSp1X0lx/AlIaUUpRoFUsyaBZHQLPv/u0kWyl1fZQoaAZoCWgPQwgEr5Y7M4ERwJSGlFKUaBVLMmgWR0Cz79w6QvHtdX2UKGgGaAloD0MIc9nonJ/iFcCUhpRSlGgVSzJoFkdAs/DZwaR6nnV9lChoBmgJaA9DCAU1fAvrRirAlIaUUpRoFUsyaBZHQLPwtzcAR051fZQoaAZoCWgPQwgHz4QmiekwwJSGlFKUaBVLMmgWR0Cz8JQiaAnVdX2UKGgGaAloD0MIZRh3g2hNKcCUhpRSlGgVSzJoFkdAs/BxaTwDvHV9lChoBmgJaA9DCJVjsrj/CCPAlIaUUpRoFUsyaBZHQLPxW+36Q/51fZQoaAZoCWgPQwhUVWgglp0RwJSGlFKUaBVLMmgWR0Cz8Tl2q1gIdX2UKGgGaAloD0MIjiEAOPZMIMCUhpRSlGgVSzJoFkdAs/EWRYA80XV9lChoBmgJaA9DCDF5A8x8GzHAlIaUUpRoFUsyaBZHQLPw85D7ZWd1fZQoaAZoCWgPQwgsRfKVQI4ywJSGlFKUaBVLMmgWR0Cz8dvvKEFodX2UKGgGaAloD0MIBAMIH0psKMCUhpRSlGgVSzJoFkdAs/G5XbM5fnV9lChoBmgJaA9DCH2TpkHRHCzAlIaUUpRoFUsyaBZHQLPxlkiD/VB1fZQoaAZoCWgPQwj8VYDvNr8pwJSGlFKUaBVLMmgWR0Cz8XOPeYUndX2UKGgGaAloD0MIX0ax3NLOMMCUhpRSlGgVSzJoFkdAs/Jl7a7EpHV9lChoBmgJaA9DCPoq+dhd2CLAlIaUUpRoFUsyaBZHQLPyQ0gKWs11fZQoaAZoCWgPQwiFe2XeqnsbwJSGlFKUaBVLMmgWR0Cz8iA/C66KdX2UKGgGaAloD0MIouwt5XyBIMCUhpRSlGgVSzJoFkdAs/H9kNFz+3V9lChoBmgJaA9DCIKo+wCkXiXAlIaUUpRoFUsyaBZHQLPy5qur6tV1fZQoaAZoCWgPQwjhXpm36iozwJSGlFKUaBVLMmgWR0Cz8sQo9cKPdX2UKGgGaAloD0MIS+guibO6LMCUhpRSlGgVSzJoFkdAs/KhD5TIenV9lChoBmgJaA9DCFXcuMX8PBzAlIaUUpRoFUsyaBZHQLPyfmlqJuV1fZQoaAZoCWgPQwhslstG5wwswJSGlFKUaBVLMmgWR0Cz82sscyWSdX2UKGgGaAloD0MIMbJkjuW9F8CUhpRSlGgVSzJoFkdAs/NIn8baRXV9lChoBmgJaA9DCFYMVwdARC7AlIaUUpRoFUsyaBZHQLPzJY+B6KN1fZQoaAZoCWgPQwhM4NbdPEUUwJSGlFKUaBVLMmgWR0Cz8wLLU1AJdX2UKGgGaAloD0MIXmbYKOvnFsCUhpRSlGgVSzJoFkdAs/Ps4FRpDnV9lChoBmgJaA9DCGt9kdCWsyzAlIaUUpRoFUsyaBZHQLPzyl4TsY51fZQoaAZoCWgPQwjjjGFO0CYOwJSGlFKUaBVLMmgWR0Cz86c7U5MldX2UKGgGaAloD0MI3A4Ni1G7M8CUhpRSlGgVSzJoFkdAs/OEcPvrnnV9lChoBmgJaA9DCC5x5IHI+irAlIaUUpRoFUsyaBZHQLP0cFIuoP11fZQoaAZoCWgPQwi+afrsgJsYwJSGlFKUaBVLMmgWR0Cz9E2z0HyFdX2UKGgGaAloD0MIC0W6n1PoIcCUhpRSlGgVSzJoFkdAs/QqcbzbvnV9lChoBmgJaA9DCOzCD86nFifAlIaUUpRoFUsyaBZHQLP0B8XN1Qt1fZQoaAZoCWgPQwi0BBkBFZ4cwJSGlFKUaBVLMmgWR0Cz9RFMuez2dX2UKGgGaAloD0MIV0J3SZylFsCUhpRSlGgVSzJoFkdAs/TvHsC1Z3V9lChoBmgJaA9DCHkCYadY3SbAlIaUUpRoFUsyaBZHQLP0zM8YAKh1fZQoaAZoCWgPQwhYqDXNO4owwJSGlFKUaBVLMmgWR0Cz9KqoddVvdX2UKGgGaAloD0MIBBxClZqtJsCUhpRSlGgVSzJoFkdAs/W60Xxe9nV9lChoBmgJaA9DCAn/ImjMmDHAlIaUUpRoFUsyaBZHQLP1mGB4D9x1fZQoaAZoCWgPQwiitDf4wiwhwJSGlFKUaBVLMmgWR0Cz9XUyk9EDdX2UKGgGaAloD0MIyQVn8PeLEcCUhpRSlGgVSzJoFkdAs/VSl3yI6HV9lChoBmgJaA9DCJ3WbVD7bS7AlIaUUpRoFUsyaBZHQLP2PdWQwK11fZQoaAZoCWgPQwgVG/M64qAXwJSGlFKUaBVLMmgWR0Cz9hs3dbgTdX2UKGgGaAloD0MIHvtZLEV2M8CUhpRSlGgVSzJoFkdAs/X4K+i8F3V9lChoBmgJaA9DCAsIrYcvRzDAlIaUUpRoFUsyaBZHQLP11Xt0FKV1fZQoaAZoCWgPQwiWeauuQxUawJSGlFKUaBVLMmgWR0Cz9sI4uK4ydX2UKGgGaAloD0MItYzUeyp3LsCUhpRSlGgVSzJoFkdAs/aftkWhy3V9lChoBmgJaA9DCOaxZmSQ2y3AlIaUUpRoFUsyaBZHQLP2fJuEVWV1fZQoaAZoCWgPQwiYo8fvbeoYwJSGlFKUaBVLMmgWR0Cz9lnUtqYadX2UKGgGaAloD0MIgAuyZfmmMMCUhpRSlGgVSzJoFkdAs/dKxoqTbHV9lChoBmgJaA9DCJfiqrLv6hvAlIaUUpRoFUsyaBZHQLP3KLGrCFd1fZQoaAZoCWgPQwhgrdo1IU0twJSGlFKUaBVLMmgWR0Cz9wWlyimEdX2UKGgGaAloD0MIUUtzK4SVIMCUhpRSlGgVSzJoFkdAs/bizTnaFnV9lChoBmgJaA9DCCkJibSNYzPAlIaUUpRoFUsyaBZHQLP30Aood+51fZQoaAZoCWgPQwgkfsUaLpomwJSGlFKUaBVLMmgWR0Cz963JT2nLdX2UKGgGaAloD0MIhVs+kpLmMsCUhpRSlGgVSzJoFkdAs/eKtjkMkXV9lChoBmgJaA9DCDYC8bp+gSnAlIaUUpRoFUsyaBZHQLP3aAZ88cN1fZQoaAZoCWgPQwhSt7OvPIgawJSGlFKUaBVLMmgWR0Cz+GE96kZadX2UKGgGaAloD0MIO4kI/yLYIsCUhpRSlGgVSzJoFkdAs/g+nwXqJXV9lChoBmgJaA9DCMbAOo4fWhbAlIaUUpRoFUsyaBZHQLP4G4mkWRB1fZQoaAZoCWgPQwhCX3r7c6kwwJSGlFKUaBVLMmgWR0Cz9/jLjghsdX2UKGgGaAloD0MIJjlgV5OTMsCUhpRSlGgVSzJoFkdAs/jkmmce83V9lChoBmgJaA9DCI9U3/lFaSrAlIaUUpRoFUsyaBZHQLP4wg7YChh1fZQoaAZoCWgPQwhqvHSTGFAywJSGlFKUaBVLMmgWR0Cz+J717IDHdX2UKGgGaAloD0MIwQDChxINH8CUhpRSlGgVSzJoFkdAs/h8duHerXV9lChoBmgJaA9DCGzPLAlQoyLAlIaUUpRoFUsyaBZHQLP5bzXz19R1fZQoaAZoCWgPQwhO0ZFc/rsowJSGlFKUaBVLMmgWR0Cz+Uz0Yj0MdX2UKGgGaAloD0MIWvJ4Wn60MMCUhpRSlGgVSzJoFkdAs/kp5hScb3V9lChoBmgJaA9DCP5/nDBh5C7AlIaUUpRoFUsyaBZHQLP5BxmCiAV1fZQoaAZoCWgPQwiIug9AajMmwJSGlFKUaBVLMmgWR0Cz+f+89Oh1dX2UKGgGaAloD0MIHNMTlnjAMcCUhpRSlGgVSzJoFkdAs/ndNKyv93V9lChoBmgJaA9DCBTtKqT85BPAlIaUUpRoFUsyaBZHQLP5ujLjght1fZQoaAZoCWgPQwhE+BdBY+YRwJSGlFKUaBVLMmgWR0Cz+Zfio86ndX2UKGgGaAloD0MID7iumBFaMMCUhpRSlGgVSzJoFkdAs/qGxfOUuHV9lChoBmgJaA9DCF1Std0EFyLAlIaUUpRoFUsyaBZHQLP6ZEtuk1x1fZQoaAZoCWgPQwiF6ubibysswJSGlFKUaBVLMmgWR0Cz+kEyP+4tdX2UKGgGaAloD0MIvJF55A9mJcCUhpRSlGgVSzJoFkdAs/oee05U+HV9lChoBmgJaA9DCHxinSrf4xrAlIaUUpRoFUsyaBZHQLP7BjB2wFF1fZQoaAZoCWgPQwibWOAruvUewJSGlFKUaBVLMmgWR0Cz+uOLJjlQdX2UKGgGaAloD0MI4XoUrkdRJ8CUhpRSlGgVSzJoFkdAs/rASh8IA3V9lChoBmgJaA9DCNDRqpZ0vCnAlIaUUpRoFUsyaBZHQLP6naUzKtB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.89+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 11 10:24:08 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f399c067560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f399c14adb0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679114795037537237, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDU9tk+ChzmOW2tCT/U9tk+ChzmOW2tCT/U9tk+ChzmOW2tCT/U9tk+ChzmOW2tCT+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMEL3w7/xq5C/O2krPyg7z7/j4DM/XeDbv8CB0r/b36o++r3Sv2MIi74oNp2/xBOCvpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2DU9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT3U9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT3U9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT3U9tk+ChzmOW2tCT9aGJU9lQbTOTjpgT2UdJRidS4=", "achieved_goal": "[[4.2571127e-01 4.3889909e-04 5.3780252e-01]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01]]", "desired_goal": "[[-1.5309832 -1.1302472 0.66957444]\n [-1.6189928 0.70265025 -1.7177845 ]\n [-1.6445847 0.33373913 -1.6464226 ]\n [-0.27154836 -1.2282152 -0.25405705]]", "observation": "[[4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]\n [4.2571127e-01 4.3889909e-04 5.3780252e-01 7.2800353e-02 4.0249960e-04\n 6.3433111e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMCzw2j3373A96u99PvmX/7xXm1g9vwGHPgxxD75PnQK+xtw1PvzHaT18ToY9mH0NPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1069034 0.0588226 0.24798551]\n [-0.0312004 0.05288252 0.2636852 ]\n [-0.14007968 -0.12755321 0.1776 ]\n [ 0.05707549 0.06557938 0.13817441]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILV3BNuJJ5b+UhpRSlIwBbJRLMowBdJRHQKT6z9MsYl91fZQoaAZoCWgPQwgVUn5S7dPlv5SGlFKUaBVLMmgWR0Ck+oz3Zf2LdX2UKGgGaAloD0MIvfvjvWpl1b+UhpRSlGgVSzJoFkdApPpKClJpWXV9lChoBmgJaA9DCPs6cM6I0uS/lIaUUpRoFUsyaBZHQKT6AVt4zJp1fZQoaAZoCWgPQwhmg0wycpbnv5SGlFKUaBVLMmgWR0Ck/W4150KadX2UKGgGaAloD0MIEtkHWRbM67+UhpRSlGgVSzJoFkdApP0pkEs8PnV9lChoBmgJaA9DCPuSjQdb7OG/lIaUUpRoFUsyaBZHQKT85NFBppN1fZQoaAZoCWgPQwjzkv/J3z34v5SGlFKUaBVLMmgWR0Ck/Jxj8UEgdX2UKGgGaAloD0MIIHpSJjU05r+UhpRSlGgVSzJoFkdApP6nVurIYHV9lChoBmgJaA9DCBQF+kSeJN2/lIaUUpRoFUsyaBZHQKT+Ye9zwMJ1fZQoaAZoCWgPQwgMPPceLjnlv5SGlFKUaBVLMmgWR0Ck/hxcmjTKdX2UKGgGaAloD0MIX2HB/YAH37+UhpRSlGgVSzJoFkdApP3TC3w1BXV9lChoBmgJaA9DCDEkJxO3Ctu/lIaUUpRoFUsyaBZHQKT/rziCJ411fZQoaAZoCWgPQwg8UKc8upHhv5SGlFKUaBVLMmgWR0Ck/2nNgSezdX2UKGgGaAloD0MIrkm3JXIB8b+UhpRSlGgVSzJoFkdApP8kLv1DjXV9lChoBmgJaA9DCMhe7/54r9a/lIaUUpRoFUsyaBZHQKT+2s+V1Ol1fZQoaAZoCWgPQwhF9dbAVgnov5SGlFKUaBVLMmgWR0ClALhYNiH7dX2UKGgGaAloD0MImX6JeOt86L+UhpRSlGgVSzJoFkdApQByuyNXHXV9lChoBmgJaA9DCHjRV5BmLOS/lIaUUpRoFUsyaBZHQKUALSiudPN1fZQoaAZoCWgPQwiSdTi6Snfqv5SGlFKUaBVLMmgWR0Ck/+PqTr3TdX2UKGgGaAloD0MIODKP/MHA37+UhpRSlGgVSzJoFkdApQHlEiMYM3V9lChoBmgJaA9DCErwhjQq8O6/lIaUUpRoFUsyaBZHQKUBn/lyR0V1fZQoaAZoCWgPQwjtKw/SU2Ttv5SGlFKUaBVLMmgWR0ClAVrPldTpdX2UKGgGaAloD0MIPWTKh6Bq5b+UhpRSlGgVSzJoFkdApQER5AyEc3V9lChoBmgJaA9DCH/C2a1lMt6/lIaUUpRoFUsyaBZHQKUDBR8+ial1fZQoaAZoCWgPQwiHokCfyJPwv5SGlFKUaBVLMmgWR0ClAr+X7cfvdX2UKGgGaAloD0MIAz4/jBAe8b+UhpRSlGgVSzJoFkdApQJ6CHymRHV9lChoBmgJaA9DCJCHvruVJeO/lIaUUpRoFUsyaBZHQKUCMNYKYzB1fZQoaAZoCWgPQwjPpE3VPbLxv5SGlFKUaBVLMmgWR0ClBFd7ngYQdX2UKGgGaAloD0MIMlpHVRPE47+UhpRSlGgVSzJoFkdApQQR3/xUenV9lChoBmgJaA9DCKyL22gAb+u/lIaUUpRoFUsyaBZHQKUDzC2MKkV1fZQoaAZoCWgPQwj1gHnIlI/lv5SGlFKUaBVLMmgWR0ClA4OBUaQ4dX2UKGgGaAloD0MIC5dV2Axw2b+UhpRSlGgVSzJoFkdApQVea+evp3V9lChoBmgJaA9DCE3Ar5EkCOe/lIaUUpRoFUsyaBZHQKUFGO5J9Rd1fZQoaAZoCWgPQwjr/rEQHYLgv5SGlFKUaBVLMmgWR0ClBNNShrWRdX2UKGgGaAloD0MIATEJF/II6r+UhpRSlGgVSzJoFkdApQSKHsTnJXV9lChoBmgJaA9DCAwgfCjRkuO/lIaUUpRoFUsyaBZHQKUGZ3Cbc451fZQoaAZoCWgPQwhjf9k9eVjYv5SGlFKUaBVLMmgWR0ClBiIH9m6HdX2UKGgGaAloD0MIx0j2CDVD1r+UhpRSlGgVSzJoFkdApQXckKNQ03V9lChoBmgJaA9DCGUYd4NoLe2/lIaUUpRoFUsyaBZHQKUFk1WsA/91fZQoaAZoCWgPQwjXpNsSueDmv5SGlFKUaBVLMmgWR0ClB2zAFgUldX2UKGgGaAloD0MIr+3tluSA6r+UhpRSlGgVSzJoFkdApQcnJ3gUDnV9lChoBmgJaA9DCPiov15hwey/lIaUUpRoFUsyaBZHQKUG4U7jkuJ1fZQoaAZoCWgPQwg4glSKHY3zv5SGlFKUaBVLMmgWR0ClBpg0bcXWdX2UKGgGaAloD0MIqpuLv+0J0b+UhpRSlGgVSzJoFkdApQh5uMuOCHV9lChoBmgJaA9DCE8Cm3PwTOO/lIaUUpRoFUsyaBZHQKUINDEWIoF1fZQoaAZoCWgPQwjkgcgiTbzov5SGlFKUaBVLMmgWR0ClB+6yjYZmdX2UKGgGaAloD0MIpP56hQX34r+UhpRSlGgVSzJoFkdApQelPDYRNHV9lChoBmgJaA9DCF/ObFfog+y/lIaUUpRoFUsyaBZHQKUJkcoYvWZ1fZQoaAZoCWgPQwiZvAFmvsPxv5SGlFKUaBVLMmgWR0ClCUxD1GsndX2UKGgGaAloD0MIMKAX7lxY8r+UhpRSlGgVSzJoFkdApQkGqaPS2HV9lChoBmgJaA9DCEgZcQFolN6/lIaUUpRoFUsyaBZHQKUIvVTaTOh1fZQoaAZoCWgPQwheLuI7Mevev5SGlFKUaBVLMmgWR0ClCq5YYBNmdX2UKGgGaAloD0MIFqOutfep2b+UhpRSlGgVSzJoFkdApQpoy2x6fXV9lChoBmgJaA9DCP2jb9I0qPC/lIaUUpRoFUsyaBZHQKUKI9r433p1fZQoaAZoCWgPQwiSW5NuS+Tmv5SGlFKUaBVLMmgWR0ClCdqr7wazdX2UKGgGaAloD0MIq5hKP+Hs37+UhpRSlGgVSzJoFkdApQu65byH23V9lChoBmgJaA9DCNv8v+rIke+/lIaUUpRoFUsyaBZHQKULdTvy9VZ1fZQoaAZoCWgPQwhOC170FaTev5SGlFKUaBVLMmgWR0ClCy+wTufFdX2UKGgGaAloD0MIOBH92vpp4L+UhpRSlGgVSzJoFkdApQrmbgCOm3V9lChoBmgJaA9DCFJkraHU3uO/lIaUUpRoFUsyaBZHQKUM0yO7xut1fZQoaAZoCWgPQwh+NnLdlPLgv5SGlFKUaBVLMmgWR0ClDI2WyC4CdX2UKGgGaAloD0MI28GIfQKo7L+UhpRSlGgVSzJoFkdApQxIEt/WlXV9lChoBmgJaA9DCMMoCB7fXuG/lIaUUpRoFUsyaBZHQKUL/viLl3h1fZQoaAZoCWgPQwjdC8wKRTrkv5SGlFKUaBVLMmgWR0ClDgTs6aLGdX2UKGgGaAloD0MI6pWyDHGs47+UhpRSlGgVSzJoFkdApQ2/g1m8NHV9lChoBmgJaA9DCK4NFeP8Tde/lIaUUpRoFUsyaBZHQKUNecQRPGh1fZQoaAZoCWgPQwhdqWdBKO/jv5SGlFKUaBVLMmgWR0ClDTCbMHKPdX2UKGgGaAloD0MIFceBV8ud1r+UhpRSlGgVSzJoFkdApQ8pkI5YHXV9lChoBmgJaA9DCL+7lSU6y9y/lIaUUpRoFUsyaBZHQKUO5A+pwS91fZQoaAZoCWgPQwgTukvirIjev5SGlFKUaBVLMmgWR0ClDp55qubJdX2UKGgGaAloD0MII9kj1Awp4b+UhpRSlGgVSzJoFkdApQ5VOEdvKnV9lChoBmgJaA9DCHeE04IX/eG/lIaUUpRoFUsyaBZHQKUQNMbm2b51fZQoaAZoCWgPQwj7WpcaoZ/ov5SGlFKUaBVLMmgWR0ClD+9rGipOdX2UKGgGaAloD0MIdlPKayX07L+UhpRSlGgVSzJoFkdApQ+pnDiwS3V9lChoBmgJaA9DCBwnhXmPM+C/lIaUUpRoFUsyaBZHQKUPYHDaXa91fZQoaAZoCWgPQwheDybFxyffv5SGlFKUaBVLMmgWR0ClEYtcnmaIdX2UKGgGaAloD0MIJegv9IjR87+UhpRSlGgVSzJoFkdApRFGOU+s5nV9lChoBmgJaA9DCAIPDCB8aPW/lIaUUpRoFUsyaBZHQKURATgVGkN1fZQoaAZoCWgPQwik+s4vStDpv5SGlFKUaBVLMmgWR0ClELjh1klNdX2UKGgGaAloD0MIDFnd6jnp6b+UhpRSlGgVSzJoFkdApRK2K/EfknV9lChoBmgJaA9DCCZvgJnv4Nu/lIaUUpRoFUsyaBZHQKUScLAHmih1fZQoaAZoCWgPQwjKwWwCDEviv5SGlFKUaBVLMmgWR0ClEisxGlQ/dX2UKGgGaAloD0MIcHhBRGpa47+UhpRSlGgVSzJoFkdApRHh7JGOMnV9lChoBmgJaA9DCDenkgGgCvO/lIaUUpRoFUsyaBZHQKUTv1oQFs51fZQoaAZoCWgPQwiYofFEEGfiv5SGlFKUaBVLMmgWR0ClE3nl4keIdX2UKGgGaAloD0MImBjL9EvE5b+UhpRSlGgVSzJoFkdApRM0hib2DnV9lChoBmgJaA9DCMTouYWuROe/lIaUUpRoFUsyaBZHQKUS6zk6tDF1fZQoaAZoCWgPQwiYNEbrqGrsv5SGlFKUaBVLMmgWR0ClFL02tMfzdX2UKGgGaAloD0MILC6Oyk3U47+UhpRSlGgVSzJoFkdApRR3hGYrrnV9lChoBmgJaA9DCP60UZ0OZOq/lIaUUpRoFUsyaBZHQKUUMdS2php1fZQoaAZoCWgPQwi+wRcmUwXkv5SGlFKUaBVLMmgWR0ClE+iGvfTDdX2UKGgGaAloD0MI9l/nps246b+UhpRSlGgVSzJoFkdApRXAikfs/3V9lChoBmgJaA9DCMxDpnwIqta/lIaUUpRoFUsyaBZHQKUVexVyWAx1fZQoaAZoCWgPQwipEfqZet3iv5SGlFKUaBVLMmgWR0ClFTV6/qPfdX2UKGgGaAloD0MI0T3rGi2H7L+UhpRSlGgVSzJoFkdApRTsLjPv8nV9lChoBmgJaA9DCIs2x7lNuNO/lIaUUpRoFUsyaBZHQKUW7Xg9/z91fZQoaAZoCWgPQwiocW9+w8Tnv5SGlFKUaBVLMmgWR0ClFqjDCP6sdX2UKGgGaAloD0MIe7/Rjht+4b+UhpRSlGgVSzJoFkdApRZi6H0sfHV9lChoBmgJaA9DCFu1a0JaY9a/lIaUUpRoFUsyaBZHQKUWGaya/h51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.89+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 11 10:24:08 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.6053224127274006, "std_reward": 0.15707095134222823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T05:31:37.682540"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3731
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2aede25f7cbf468495586648e8d38845dc4e750124f3667325f839fd645b49d1
|
3 |
size 3731
|