pranjalchitale
commited on
Commit
·
c26e5b3
1
Parent(s):
4a5d9b4
Update README.md
Browse files
README.md
CHANGED
@@ -62,7 +62,75 @@ Please refer to `Appendix D: Model Card` of the [preprint](https://arxiv.org/abs
|
|
62 |
|
63 |
Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_inference) for a detail description on how to use HF compatible IndicTrans2 models for inference.
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Citation
|
|
|
62 |
|
63 |
Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_inference) for a detail description on how to use HF compatible IndicTrans2 models for inference.
|
64 |
|
65 |
+
```python
|
66 |
+
import torch
|
67 |
+
from transformers import (
|
68 |
+
AutoModelForSeq2SeqLM,
|
69 |
+
AutoTokenizer,
|
70 |
+
)
|
71 |
+
from IndicTransTokenizer import IndicProcessor
|
72 |
+
|
73 |
+
|
74 |
+
model_name = "ai4bharat/indictrans2-indic-en-1B"
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
76 |
+
|
77 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
|
78 |
+
|
79 |
+
ip = IndicProcessor(inference=True)
|
80 |
+
|
81 |
+
input_sentences = [
|
82 |
+
"जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।",
|
83 |
+
"हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।",
|
84 |
+
"अगर तुम मुझे उस समय पास मिलते, तो हम बाहर खाना खाने चलते।",
|
85 |
+
"मेरे मित्र ने मुझे उसके जन्मदिन की पार्टी में बुलाया है, और मैं उसे एक तोहफा दूंगा।",
|
86 |
+
]
|
87 |
+
|
88 |
+
src_lang, tgt_lang = "hin_Deva", "eng_Latn"
|
89 |
+
|
90 |
+
batch = ip.preprocess_batch(
|
91 |
+
input_sentences,
|
92 |
+
src_lang=src_lang,
|
93 |
+
tgt_lang=tgt_lang,
|
94 |
+
)
|
95 |
+
|
96 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
97 |
+
|
98 |
+
# Tokenize the sentences and generate input encodings
|
99 |
+
inputs = tokenizer(
|
100 |
+
batch,
|
101 |
+
truncation=True,
|
102 |
+
padding="longest",
|
103 |
+
return_tensors="pt",
|
104 |
+
return_attention_mask=True,
|
105 |
+
).to(DEVICE)
|
106 |
+
|
107 |
+
# Generate translations using the model
|
108 |
+
with torch.no_grad():
|
109 |
+
generated_tokens = model.generate(
|
110 |
+
**inputs,
|
111 |
+
use_cache=True,
|
112 |
+
min_length=0,
|
113 |
+
max_length=256,
|
114 |
+
num_beams=5,
|
115 |
+
num_return_sequences=1,
|
116 |
+
)
|
117 |
+
|
118 |
+
# Decode the generated tokens into text
|
119 |
+
with tokenizer.as_target_tokenizer():
|
120 |
+
generated_tokens = tokenizer.batch_decode(
|
121 |
+
generated_tokens.detach().cpu().tolist(),
|
122 |
+
skip_special_tokens=True,
|
123 |
+
clean_up_tokenization_spaces=True,
|
124 |
+
)
|
125 |
+
|
126 |
+
# Postprocess the translations, including entity replacement
|
127 |
+
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
128 |
+
|
129 |
+
for input_sentence, translation in zip(input_sentences, translations):
|
130 |
+
print(f"{src_lang}: {input_sentence}")
|
131 |
+
print(f"{tgt_lang}: {translation}")
|
132 |
+
```
|
133 |
+
|
134 |
|
135 |
|
136 |
### Citation
|