draj commited on
Commit
9bf5929
·
1 Parent(s): 5f7f888

Separate script IB model

Browse files
Files changed (1) hide show
  1. README.md +63 -3
README.md CHANGED
@@ -1,3 +1,63 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This is the IndicBART model. For detailed documentation look here: https://indicnlp.ai4bharat.org/indic-bart/ and https://github.com/AI4Bharat/indic-bart/
2
+
3
+ Usage:
4
+
5
+ ```
6
+ from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
7
+ from transformers import AlbertTokenizer, AutoTokenizer
8
+
9
+ tokenizer = AutoTokenizer.from_pretrained("prajdabre/IndicBART", do_lower_case=False, use_fast=False, keep_accents=True)
10
+
11
+ # Or use tokenizer = AlbertTokenizer.from_pretrained("prajdabre/IndicBART", do_lower_case=False, use_fast=False, keep_accents=True)
12
+
13
+ model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/IndicBART")
14
+
15
+ # Or use model = MBartForConditionalGeneration.from_pretrained("prajdabre/IndicBART")
16
+
17
+ # Some initial mapping
18
+ bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
19
+ eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
20
+ pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
21
+ # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
22
+
23
+ # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
24
+ inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
25
+
26
+ out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]])
27
+
28
+ model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
29
+
30
+ # For loss
31
+ model_outputs.loss ## This is not label smoothed.
32
+
33
+ # For logits
34
+ model_outputs.logits
35
+
36
+ # For generation. Pardon the messiness. Note the decoder_start_token_id.
37
+
38
+ model.eval() # Set dropouts to zero
39
+
40
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
41
+
42
+
43
+ # Decode to get output strings
44
+
45
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
46
+
47
+ print(decoded_output) # I am a boy
48
+
49
+ # What if we mask?
50
+
51
+ inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
52
+
53
+ model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
54
+
55
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
56
+
57
+ print(decoded_output) # I am happy
58
+ ```
59
+
60
+ Notes:
61
+ 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible.
62
+ 2. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration
63
+ 3. Note that the tokenizer I have used is based on sentencepiece and not BPE. Therefore I use the AlbertTokenizer class and not the MBartTokenizer class.