vltnmmdv commited on
Commit
6ea8554
1 Parent(s): 144387c

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,41 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model:
4
+ - ai-sage/GigaChat-20B-A3B-instruct
5
+ language:
6
+ - ru
7
+ - en
8
+ ---
9
+ # GigaChat-20B-A3B-instruct bf16
10
+
11
+ Диалоговая модель из семейства моделей GigaChat, основная на [ai-sage/GigaChat-20B-A3B-instruct](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct). Поддерживает контекст в 131 тысячу токенов.
12
+
13
+ Больше потребностей в [хабр статье](https://habr.com/en/companies/sberdevices/articles/865996/) и в карточке оригинальной instruct модели.
14
+
15
+
16
+ ## Пример использования через transformers
17
+
18
+ ```bash
19
+ pip install --upgrade transformers torch accelerate bitsandbytes
20
+ ```
21
+
22
+
23
+ ```python
24
+ import torch
25
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
26
+
27
+ model_name = "ai-sage/GigaChat-20B-A3B-instruct-bf16"
28
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
29
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16)
30
+ model.generation_config = GenerationConfig.from_pretrained(model_name)
31
+
32
+ messages = [
33
+ {"role": "user", "content": "Докажи теорему о неподвижной точке"}
34
+ ]
35
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
36
+ outputs = model.generate(input_tensor.to(model.device))
37
+
38
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False)
39
+ print(result)
40
+ ```
41
+
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/jovyan/dvmazur/giga-chat-lite-metrics/fp32/GigaChat-20B-A3B-instruct",
3
+ "architectures": [
4
+ "DeepseekForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_deepseek.DeepseekConfig",
10
+ "AutoModel": "modelling_deepseek.DeepseekModel",
11
+ "AutoModelForCausalLM": "modelling_deepseek.DeepseekForCausalLM"
12
+ },
13
+ "aux_loss_alpha": 0.001,
14
+ "bos_token_id": 1,
15
+ "eos_token_id": 128001,
16
+ "first_k_dense_replace": 1,
17
+ "head_dim": 128,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 2048,
20
+ "initializer_range": 0.006,
21
+ "intermediate_size": 14336,
22
+ "max_position_embeddings": 131072,
23
+ "mlp_bias": false,
24
+ "model_type": "deepseek",
25
+ "moe_implementation": "eager",
26
+ "moe_intermediate_size": 1792,
27
+ "moe_layer_freq": 1,
28
+ "n_routed_experts": 64,
29
+ "n_shared_experts": 2,
30
+ "norm_topk_prob": false,
31
+ "num_attention_heads": 16,
32
+ "num_experts_per_tok": 6,
33
+ "num_hidden_layers": 28,
34
+ "num_key_value_heads": 8,
35
+ "pad_token_id": 1,
36
+ "pretraining_tp": 1,
37
+ "rms_norm_eps": 1e-05,
38
+ "rope_scaling": null,
39
+ "rope_theta": 1400000,
40
+ "scoring_func": "softmax",
41
+ "seq_aux": true,
42
+ "tie_word_embeddings": false,
43
+ "torch_dtype": "bfloat16",
44
+ "transformers_version": "4.47.0",
45
+ "use_cache": true,
46
+ "vocab_size": 128256
47
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Deepseek Moe model configuration"""
2
+ from transformers.utils import logging
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.modeling_rope_utils import rope_config_validation
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+ DEEPSEEK_FIXES_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
9
+ class DeepseekConfig(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a DeepseekModel`]. It is used to instantiate an DeepSeek
12
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
13
+ defaults will yield a similar configuration to that of the DeepseekModel-20b.
14
+
15
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
16
+ documentation from [`PretrainedConfig`] for more information.
17
+
18
+
19
+ Args:
20
+ vocab_size (`int`, *optional*, defaults to 128256):
21
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
22
+ `inputs_ids` passed when calling [`DeepseekModel`]
23
+ hidden_size (`int`, *optional*, defaults to 4096):
24
+ Dimension of the hidden representations.
25
+ intermediate_size (`int`, *optional*, defaults to 11008):
26
+ Dimension of the MLP representations.
27
+ moe_intermediate_size (`int`, *optional*, defaults to 1792):
28
+ Dimension of the MoE representations.
29
+ num_hidden_layers (`int`, *optional*, defaults to 32):
30
+ Number of hidden layers in the Transformer decoder.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ num_experts_per_tok (`int`, *optional*, defaults to None):
38
+ Number of selected experts, None means dense model.
39
+ moe_layer_freq (`int`, *optional*, defaults to 1):
40
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
41
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
42
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
43
+ \--k dense layers--/
44
+ norm_topk_prob (`bool`, *optional*, defaults to False):
45
+ Whether to normalize the weights of the routed experts.
46
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
47
+ Method of computing expert weights.
48
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
49
+ Auxiliary loss weight coefficient.
50
+ seq_aux = (`bool`, *optional*, defaults to True):
51
+ Whether to compute the auxiliary loss for each individual sample.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
63
+ The maximum sequence length that this model might ever be used with.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
67
+ The epsilon used by the rms normalization layers.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
70
+ relevant if `config.is_decoder=True`.
71
+ pad_token_id (`int`, *optional*):
72
+ Padding token id.
73
+ bos_token_id (`int`, *optional*, defaults to 1):
74
+ Beginning of stream token id.
75
+ eos_token_id (`int`, *optional*, defaults to 2):
76
+ End of stream token id.
77
+ pretraining_tp (`int`, *optional*, defaults to 1):
78
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
79
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
80
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
81
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
82
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
83
+ Whether to tie weight embeddings
84
+ rope_theta (`float`, *optional*, defaults to 10000.0):
85
+ The base period of the RoPE embeddings.
86
+ rope_scaling (`Dict`, *optional*):
87
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
88
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
89
+ accordingly.
90
+ Expected contents:
91
+ `rope_type` (`str`):
92
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
93
+ 'llama3'], with 'default' being the original RoPE implementation.
94
+ `factor` (`float`, *optional*):
95
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
96
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
97
+ original maximum pre-trained length.
98
+ `original_max_position_embeddings` (`int`, *optional*):
99
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
100
+ pretraining.
101
+ `attention_factor` (`float`, *optional*):
102
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
103
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
104
+ `factor` field to infer the suggested value.
105
+ `beta_fast` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 32.
108
+ `beta_slow` (`float`, *optional*):
109
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
110
+ ramp function. If unspecified, it defaults to 1.
111
+ `short_factor` (`List[float]`, *optional*):
112
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
113
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
114
+ size divided by the number of attention heads divided by 2
115
+ `long_factor` (`List[float]`, *optional*):
116
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
117
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
118
+ size divided by the number of attention heads divided by 2
119
+ `low_freq_factor` (`float`, *optional*):
120
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
121
+ `high_freq_factor` (`float`, *optional*):
122
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
123
+ attention_bias (`bool`, *optional*, defaults to `False`):
124
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
125
+ attention_dropout (`float`, *optional*, defaults to 0.0):
126
+ The dropout ratio for the attention probabilities.
127
+ mlp_bias (`bool`, *optional*, defaults to `False`):
128
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
129
+ head_dim (`int`, *optional*):
130
+ The attention head dimension. If None, it will default to hidden_size // num_heads
131
+
132
+ ```python
133
+ >>> from transformers import DeepseekModel, DeepseekConfig
134
+
135
+ >>> configuration = DeepseekConfig()
136
+ >>> model = DeepseekModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "deepseek"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+
145
+ def __init__(
146
+ self,
147
+ vocab_size=128256,
148
+ hidden_size=2048,
149
+ intermediate_size=14336,
150
+ moe_intermediate_size = 1792,
151
+ num_hidden_layers=28,
152
+ num_attention_heads=16,
153
+ num_key_value_heads=8,
154
+ n_shared_experts = None,
155
+ n_routed_experts = None,
156
+ num_experts_per_tok = None,
157
+ moe_layer_freq = 1,
158
+ first_k_dense_replace = 0,
159
+ norm_topk_prob = False,
160
+ scoring_func = 'softmax',
161
+ aux_loss_alpha = 0.001,
162
+ seq_aux = True,
163
+ hidden_act="silu",
164
+ max_position_embeddings=2048,
165
+ initializer_range=0.02,
166
+ rms_norm_eps=1e-6,
167
+ use_cache=True,
168
+ pad_token_id=None,
169
+ bos_token_id=1,
170
+ eos_token_id=2,
171
+ pretraining_tp=1,
172
+ tie_word_embeddings=False,
173
+ rope_theta=10000.0,
174
+ rope_scaling=None,
175
+ attention_bias=False,
176
+ attention_dropout=0.0,
177
+ moe_implementation="eager",
178
+ mlp_bias=False,
179
+ head_dim=None,
180
+ **kwargs,
181
+ ):
182
+ assert moe_implementation in ('eager', ), "Invalid moe_implementation value."
183
+ self.vocab_size = vocab_size
184
+ self.max_position_embeddings = max_position_embeddings
185
+ self.hidden_size = hidden_size
186
+ self.intermediate_size = intermediate_size
187
+ self.moe_intermediate_size = moe_intermediate_size
188
+ self.num_hidden_layers = num_hidden_layers
189
+ self.num_attention_heads = num_attention_heads
190
+ self.n_shared_experts = n_shared_experts
191
+ self.n_routed_experts = n_routed_experts
192
+ self.num_experts_per_tok = num_experts_per_tok
193
+ self.moe_layer_freq = moe_layer_freq
194
+ self.first_k_dense_replace = first_k_dense_replace
195
+ self.norm_topk_prob = norm_topk_prob
196
+ self.scoring_func = scoring_func
197
+ self.aux_loss_alpha = aux_loss_alpha
198
+ self.seq_aux = seq_aux
199
+
200
+ # for backward compatibility
201
+ if num_key_value_heads is None:
202
+ num_key_value_heads = num_attention_heads
203
+
204
+ self.num_key_value_heads = num_key_value_heads
205
+ self.hidden_act = hidden_act
206
+ self.initializer_range = initializer_range
207
+ self.rms_norm_eps = rms_norm_eps
208
+ self.pretraining_tp = pretraining_tp
209
+ self.use_cache = use_cache
210
+ self.rope_theta = rope_theta
211
+ self.rope_scaling = rope_scaling
212
+ self.attention_bias = attention_bias
213
+ self.attention_dropout = attention_dropout
214
+ self.mlp_bias = mlp_bias
215
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
216
+ # Validate the correctness of rotary position embeddings parameters
217
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
218
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
219
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
220
+ rope_config_validation(self)
221
+ self.moe_implementation = moe_implementation
222
+
223
+ super().__init__(
224
+ pad_token_id=pad_token_id,
225
+ bos_token_id=bos_token_id,
226
+ eos_token_id=eos_token_id,
227
+ tie_word_embeddings=tie_word_embeddings,
228
+ **kwargs,
229
+ )
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 128001,
5
+ "max_new_tokens": 2048,
6
+ "pad_token_id": 2,
7
+ "transformers_version": "4.47.0"
8
+ }
model-00001-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb36e1ff7fa81868b4247ca5a8d7b8ba05781ec8a8e13a5125ecbc64853e39e9
3
+ size 4993941128
model-00002-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61dec54b1005e5c7dd727899d1febf5fe90923051b45bfefdda576c08c1d7f97
3
+ size 4997630296
model-00003-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50d79e09c7a173bb2a06a2f55219c23082b9d6f95f00c4f5d284ee1e7598f20c
3
+ size 4994214328
model-00004-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95212e24368153cd6c33caedb1cef31ef9597479cc439c410e3dcc41ccaf1786
3
+ size 4997631008
model-00005-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ac6eaf9a7c03a0879635a5479a2a41408689bc844d1cd78a05b5f3c21b6d42
3
+ size 4994214840
model-00006-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:221159a147ee113cc73ea127873b6701c1e7910ea8b8eb812a41d312e1b0abbf
3
+ size 4994214872
model-00007-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eceb292bd9cbd432cd3b53732c1f5c89c61721600bb8df6104dce3d9ce085ef8
3
+ size 4997630984
model-00008-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7063cb4a856bb341382a15c406b73ccfc7a68a12896ed230b1edd202fcccf44d
3
+ size 4994214872
model-00009-of-00009.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59aba95274efdf8750eda28da952e9a04029adbca550c50053f27e4ded0d7869
3
+ size 1215585864
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modelling_deepseek.py ADDED
@@ -0,0 +1,1413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """ PyTorch Deepseek Moe model with fixed Rope and updated code."""
3
+ import math
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ import torch.utils.checkpoint
9
+ from torch import nn
10
+
11
+ from transformers.activations import ACT2FN
12
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
13
+ from transformers.generation import GenerationMixin
14
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
15
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
16
+ from transformers.modeling_outputs import (
17
+ BaseModelOutputWithPast,
18
+ CausalLMOutputWithPast,
19
+ SequenceClassifierOutputWithPast,
20
+ )
21
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.processing_utils import Unpack
24
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
25
+ from transformers.utils import (
26
+ LossKwargs,
27
+ add_start_docstrings,
28
+ add_start_docstrings_to_model_forward,
29
+ is_flash_attn_greater_or_equal_2_10,
30
+ logging,
31
+ replace_return_docstrings,
32
+ )
33
+ from .configuration_deepseek import DeepseekConfig
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ _CONFIG_FOR_DOC = "DeepseekConfig"
39
+
40
+
41
+ class DeepseekRMSNorm(nn.Module):
42
+ def __init__(self, hidden_size, eps=1e-6):
43
+ """
44
+ DeepseekRMSNorm is equivalent to T5LayerNorm
45
+ """
46
+ super().__init__()
47
+ self.weight = nn.Parameter(torch.ones(hidden_size))
48
+ self.variance_epsilon = eps
49
+
50
+ def forward(self, hidden_states):
51
+ input_dtype = hidden_states.dtype
52
+ hidden_states = hidden_states.to(torch.float32)
53
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
54
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
55
+ return self.weight * hidden_states.to(input_dtype)
56
+
57
+ def extra_repr(self):
58
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
59
+
60
+
61
+ ALL_LAYERNORM_LAYERS.append(DeepseekRMSNorm)
62
+
63
+
64
+ class DeepseekRotaryEmbedding(nn.Module):
65
+ def __init__(
66
+ self,
67
+ dim=None,
68
+ max_position_embeddings=2048,
69
+ base=10000,
70
+ device=None,
71
+ scaling_factor=1.0,
72
+ rope_type="default",
73
+ config: Optional[DeepseekConfig] = None,
74
+ ):
75
+ super().__init__()
76
+ # TODO (joao): remove the `if` below, only used for BC
77
+ self.rope_kwargs = {}
78
+ if config is None:
79
+ logger.warning_once(
80
+ "`DeepseekRotaryEmbedding` can now be fully parameterized by passing the model config through the "
81
+ "`config` argument. All other arguments will be removed in v4.46"
82
+ )
83
+ self.rope_kwargs = {
84
+ "rope_type": rope_type,
85
+ "factor": scaling_factor,
86
+ "dim": dim,
87
+ "base": base,
88
+ "max_position_embeddings": max_position_embeddings,
89
+ }
90
+ self.rope_type = rope_type
91
+ self.max_seq_len_cached = max_position_embeddings
92
+ self.original_max_seq_len = max_position_embeddings
93
+ else:
94
+ # BC: "rope_type" was originally "type"
95
+ if config.rope_scaling is not None:
96
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
97
+ else:
98
+ self.rope_type = "default"
99
+ self.max_seq_len_cached = config.max_position_embeddings
100
+ self.original_max_seq_len = config.max_position_embeddings
101
+
102
+ self.config = config
103
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
104
+
105
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
106
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
107
+ self.original_inv_freq = self.inv_freq
108
+
109
+ def _dynamic_frequency_update(self, position_ids, device):
110
+ """
111
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
112
+ 1 - growing beyond the cached sequence length (allow scaling)
113
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
114
+ """
115
+ seq_len = torch.max(position_ids) + 1
116
+ if seq_len > self.max_seq_len_cached: # growth
117
+ inv_freq, self.attention_scaling = self.rope_init_fn(
118
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
119
+ )
120
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
121
+ self.max_seq_len_cached = seq_len
122
+
123
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
124
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
125
+ self.max_seq_len_cached = self.original_max_seq_len
126
+
127
+ @torch.no_grad()
128
+ def forward(self, x, position_ids):
129
+ if "dynamic" in self.rope_type:
130
+ self._dynamic_frequency_update(position_ids, device=x.device)
131
+
132
+ # Core RoPE block
133
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
134
+ position_ids_expanded = position_ids[:, None, :].float()
135
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
136
+ device_type = x.device.type
137
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
138
+ with torch.autocast(device_type=device_type, enabled=False):
139
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
140
+ emb = torch.cat((freqs, freqs), dim=-1)
141
+ cos = emb.cos()
142
+ sin = emb.sin()
143
+
144
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
145
+ cos = cos * self.attention_scaling
146
+ sin = sin * self.attention_scaling
147
+
148
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
149
+
150
+
151
+ class DeepseekLinearScalingRotaryEmbedding(DeepseekRotaryEmbedding):
152
+ """DeepseekRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
153
+
154
+ def __init__(self, *args, **kwargs):
155
+ logger.warning_once(
156
+ "`DeepseekLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
157
+ "`DeepseekRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
158
+ )
159
+ kwargs["rope_type"] = "linear"
160
+ super().__init__(*args, **kwargs)
161
+
162
+
163
+ class DeepseekDynamicNTKScalingRotaryEmbedding(DeepseekRotaryEmbedding):
164
+ """DeepseekRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
165
+
166
+ def __init__(self, *args, **kwargs):
167
+ logger.warning_once(
168
+ "`DeepseekDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
169
+ "`DeepseekRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
170
+ "__init__)."
171
+ )
172
+ kwargs["rope_type"] = "dynamic"
173
+ super().__init__(*args, **kwargs)
174
+
175
+
176
+ def rotate_half(x):
177
+ """Rotates half the hidden dims of the input."""
178
+ x1 = x[..., : x.shape[-1] // 2]
179
+ x2 = x[..., x.shape[-1] // 2 :]
180
+ return torch.cat((-x2, x1), dim=-1)
181
+
182
+
183
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
184
+ """Applies Rotary Position Embedding to the query and key tensors.
185
+
186
+ Args:
187
+ q (`torch.Tensor`): The query tensor.
188
+ k (`torch.Tensor`): The key tensor.
189
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
190
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
191
+ position_ids (`torch.Tensor`, *optional*):
192
+ Deprecated and unused.
193
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
194
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
195
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
196
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
197
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
198
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
199
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
200
+ Returns:
201
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
202
+ """
203
+ cos = cos.unsqueeze(unsqueeze_dim)
204
+ sin = sin.unsqueeze(unsqueeze_dim)
205
+ q_embed = (q * cos) + (rotate_half(q) * sin)
206
+ k_embed = (k * cos) + (rotate_half(k) * sin)
207
+ return q_embed, k_embed
208
+
209
+
210
+ class DeepseekMLP(nn.Module):
211
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
212
+ super().__init__()
213
+ self.config = config
214
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
215
+ self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
216
+
217
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
218
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
219
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
220
+ self.act_fn = ACT2FN[config.hidden_act]
221
+
222
+ def forward(self, x, **kwargs):
223
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
224
+ return down_proj
225
+
226
+
227
+ class MoEGate(nn.Module):
228
+ def __init__(self, config):
229
+ super().__init__()
230
+ self.config = config
231
+ self.top_k = config.num_experts_per_tok
232
+ self.n_routed_experts = config.n_routed_experts
233
+
234
+ self.scoring_func = config.scoring_func
235
+ self.alpha = config.aux_loss_alpha
236
+ self.seq_aux = config.seq_aux
237
+
238
+ # topk selection algorithm
239
+ self.norm_topk_prob = config.norm_topk_prob
240
+ self.gating_dim = config.hidden_size
241
+ self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
242
+
243
+ self.reset_parameters()
244
+
245
+ def reset_parameters(self) -> None:
246
+ import torch.nn.init as init
247
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
248
+
249
+ def forward(self, hidden_states):
250
+ bsz, seq_len, h = hidden_states.shape
251
+ # Compute gating score
252
+ hidden_states = hidden_states.view(-1, h)
253
+ logits = F.linear(hidden_states, self.weight, None)
254
+ if self.scoring_func == 'softmax':
255
+ scores = logits.to(torch.float32).softmax(dim=-1)
256
+ else:
257
+ raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
258
+
259
+ # Select top-k experts
260
+ topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
261
+
262
+ # Norm gate to sum 1
263
+ if self.top_k > 1 and self.norm_topk_prob:
264
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
265
+ topk_weight = topk_weight / denominator
266
+
267
+ # Expert-level computation auxiliary loss
268
+ aux_loss = None
269
+ return topk_idx, topk_weight.to(hidden_states.dtype), aux_loss
270
+
271
+
272
+ class AddAuxiliaryLoss(torch.autograd.Function):
273
+ """
274
+ The trick function of adding auxiliary (aux) loss,
275
+ which includes the gradient of the aux loss during backpropagation.
276
+ """
277
+
278
+ @staticmethod
279
+ def forward(ctx, x, loss):
280
+ assert loss.numel() == 1
281
+ ctx.dtype = loss.dtype
282
+ ctx.required_aux_loss = loss.requires_grad
283
+ return x
284
+
285
+ @staticmethod
286
+ def backward(ctx, grad_output):
287
+ grad_loss = None
288
+ if ctx.required_aux_loss:
289
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
290
+ return grad_output, grad_loss
291
+
292
+
293
+ class DeepseekMoE(nn.Module):
294
+ """
295
+ A mixed expert module containing shared experts.
296
+ """
297
+
298
+ def __init__(self, config):
299
+ super().__init__()
300
+ self.config = config
301
+ self.num_experts_per_tok = config.num_experts_per_tok
302
+ self.experts = nn.ModuleList(
303
+ [DeepseekMLP(config, intermediate_size=config.moe_intermediate_size) for i in
304
+ range(config.n_routed_experts)])
305
+ self.gate = MoEGate(config)
306
+ if config.n_shared_experts is not None:
307
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
308
+ self.shared_experts = DeepseekMLP(config=config, intermediate_size=intermediate_size)
309
+
310
+ def forward(self, hidden_states):
311
+ identity = hidden_states
312
+ orig_shape = hidden_states.shape
313
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
314
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
315
+ flat_topk_idx = topk_idx.view(-1)
316
+ if self.training:
317
+ y = self.moe_train(hidden_states, flat_topk_idx, topk_weight.view(-1, 1))
318
+ y = y.view(*orig_shape)
319
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
320
+ else:
321
+ y = self.moe_infer(hidden_states, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
322
+ if self.config.n_shared_experts is not None:
323
+ y = y + self.shared_experts(identity)
324
+ return y
325
+
326
+ def moe_train(self, hidden_states, flat_topk_idx, topk_weight):
327
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
328
+ y = torch.empty_like(hidden_states)
329
+ for i, expert in enumerate(self.experts):
330
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
331
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
332
+ return y
333
+
334
+ @torch.no_grad()
335
+ def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
336
+ expert_cache = torch.zeros_like(x)
337
+ idxs = flat_expert_indices.argsort()
338
+ tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
339
+ token_idxs = idxs // self.num_experts_per_tok
340
+ for i, end_idx in enumerate(tokens_per_expert):
341
+ start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
342
+ if start_idx == end_idx:
343
+ continue
344
+ expert = self.experts[i]
345
+ exp_token_idx = token_idxs[start_idx:end_idx]
346
+ expert_tokens = x[exp_token_idx]
347
+ expert_out = expert(expert_tokens)
348
+ expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
349
+ expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
350
+ return expert_cache
351
+
352
+
353
+ Deepseek_MOE_CLASSES = {
354
+ 'eager': DeepseekMoE,
355
+ }
356
+
357
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
358
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
359
+ """
360
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
361
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
362
+ """
363
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
364
+ if n_rep == 1:
365
+ return hidden_states
366
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
367
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
368
+
369
+
370
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Deepseek
371
+ class DeepseekAttention(nn.Module):
372
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
373
+
374
+ def __init__(self, config: DeepseekConfig, layer_idx: Optional[int] = None):
375
+ super().__init__()
376
+ self.config = config
377
+ self.layer_idx = layer_idx
378
+ if layer_idx is None:
379
+ logger.warning_once(
380
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
381
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
382
+ "when creating this class."
383
+ )
384
+
385
+ self.attention_dropout = config.attention_dropout
386
+ self.hidden_size = config.hidden_size
387
+ self.num_heads = config.num_attention_heads
388
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
389
+ self.num_key_value_heads = config.num_key_value_heads
390
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
391
+ self.max_position_embeddings = config.max_position_embeddings
392
+ self.rope_theta = config.rope_theta
393
+ self.is_causal = True
394
+
395
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
396
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
397
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
398
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
399
+
400
+ # TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
401
+ self.rotary_emb = DeepseekRotaryEmbedding(config=self.config)
402
+
403
+ def forward(
404
+ self,
405
+ hidden_states: torch.Tensor,
406
+ attention_mask: Optional[torch.Tensor] = None,
407
+ position_ids: Optional[torch.LongTensor] = None,
408
+ past_key_value: Optional[Cache] = None,
409
+ output_attentions: bool = False,
410
+ use_cache: bool = False,
411
+ cache_position: Optional[torch.LongTensor] = None,
412
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
413
+ **kwargs,
414
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
415
+ bsz, q_len, _ = hidden_states.size()
416
+
417
+ query_states = self.q_proj(hidden_states)
418
+ key_states = self.k_proj(hidden_states)
419
+ value_states = self.v_proj(hidden_states)
420
+
421
+ # use -1 to infer num_heads and num_key_value_heads as they may vary if tensor parallel is used
422
+ query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
423
+ key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
424
+ value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
425
+
426
+ if position_embeddings is None:
427
+ logger.warning_once(
428
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
429
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
430
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
431
+ "removed and `position_embeddings` will be mandatory."
432
+ )
433
+ cos, sin = self.rotary_emb(value_states, position_ids)
434
+ else:
435
+ cos, sin = position_embeddings
436
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
437
+
438
+ if past_key_value is not None:
439
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
440
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
441
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
442
+
443
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
444
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
445
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
446
+
447
+ if attention_mask is not None: # no matter the length, we just slice it
448
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
449
+ attn_weights = attn_weights + causal_mask
450
+
451
+ # upcast attention to fp32
452
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
453
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
454
+ attn_output = torch.matmul(attn_weights, value_states)
455
+
456
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
457
+ raise ValueError(
458
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
459
+ f" {attn_output.size()}"
460
+ )
461
+
462
+ attn_output = attn_output.transpose(1, 2).contiguous()
463
+
464
+ attn_output = attn_output.reshape(bsz, q_len, -1)
465
+
466
+ attn_output = self.o_proj(attn_output)
467
+
468
+ if not output_attentions:
469
+ attn_weights = None
470
+
471
+ return attn_output, attn_weights, past_key_value
472
+
473
+
474
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Deepseek
475
+ class DeepseekFlashAttention2(DeepseekAttention):
476
+ """
477
+ Deepseek flash attention module. This module inherits from `DeepseekAttention` as the weights of the module stays
478
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
479
+ flash attention and deal with padding tokens in case the input contains any of them.
480
+ """
481
+
482
+ def __init__(self, *args, **kwargs):
483
+ super().__init__(*args, **kwargs)
484
+
485
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
486
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
487
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
488
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
489
+
490
+ def forward(
491
+ self,
492
+ hidden_states: torch.Tensor,
493
+ attention_mask: Optional[torch.LongTensor] = None,
494
+ position_ids: Optional[torch.LongTensor] = None,
495
+ past_key_value: Optional[Cache] = None,
496
+ output_attentions: bool = False,
497
+ use_cache: bool = False,
498
+ cache_position: Optional[torch.LongTensor] = None,
499
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
500
+ **kwargs: Unpack[FlashAttentionKwargs],
501
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
502
+ if isinstance(past_key_value, StaticCache):
503
+ raise ValueError(
504
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
505
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
506
+ )
507
+
508
+ output_attentions = False
509
+
510
+ bsz, q_len, _ = hidden_states.size()
511
+
512
+ query_states = self.q_proj(hidden_states)
513
+ key_states = self.k_proj(hidden_states)
514
+ value_states = self.v_proj(hidden_states)
515
+
516
+ # Flash attention requires the input to have the shape
517
+ # batch_size x seq_length x head_dim x hidden_dim
518
+ # therefore we just need to keep the original shape
519
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
520
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
521
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
522
+
523
+ if position_embeddings is None:
524
+ logger.warning_once(
525
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
526
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
527
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
528
+ "removed and `position_embeddings` will be mandatory."
529
+ )
530
+ cos, sin = self.rotary_emb(value_states, position_ids)
531
+ else:
532
+ cos, sin = position_embeddings
533
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
534
+
535
+ if past_key_value is not None:
536
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
537
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
538
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
539
+
540
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
541
+ # to be able to avoid many of these transpose/reshape/view.
542
+ query_states = query_states.transpose(1, 2)
543
+ key_states = key_states.transpose(1, 2)
544
+ value_states = value_states.transpose(1, 2)
545
+
546
+ dropout_rate = self.attention_dropout if self.training else 0.0
547
+
548
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
549
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
550
+ # cast them back in the correct dtype just to be sure everything works as expected.
551
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
552
+ # in fp32. (DeepseekRMSNorm handles it correctly)
553
+
554
+ input_dtype = query_states.dtype
555
+ if input_dtype == torch.float32:
556
+ if torch.is_autocast_enabled():
557
+ target_dtype = torch.get_autocast_gpu_dtype()
558
+ # Handle the case where the model is quantized
559
+ elif hasattr(self.config, "_pre_quantization_dtype"):
560
+ target_dtype = self.config._pre_quantization_dtype
561
+ else:
562
+ target_dtype = self.q_proj.weight.dtype
563
+
564
+ logger.warning_once(
565
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
566
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
567
+ f" {target_dtype}."
568
+ )
569
+
570
+ query_states = query_states.to(target_dtype)
571
+ key_states = key_states.to(target_dtype)
572
+ value_states = value_states.to(target_dtype)
573
+
574
+ attn_output = _flash_attention_forward(
575
+ query_states,
576
+ key_states,
577
+ value_states,
578
+ attention_mask,
579
+ q_len,
580
+ position_ids=position_ids,
581
+ dropout=dropout_rate,
582
+ sliding_window=getattr(self, "sliding_window", None),
583
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
584
+ is_causal=self.is_causal,
585
+ **kwargs,
586
+ )
587
+
588
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
589
+ attn_output = self.o_proj(attn_output)
590
+
591
+ if not output_attentions:
592
+ attn_weights = None
593
+
594
+ return attn_output, attn_weights, past_key_value
595
+
596
+ # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Deepseek
597
+ class DeepseekSdpaAttention(DeepseekAttention):
598
+ """
599
+ Deepseek attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
600
+ `DeepseekAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
601
+ SDPA API.
602
+ """
603
+
604
+ # Adapted from DeepseekAttention.forward
605
+ def forward(
606
+ self,
607
+ hidden_states: torch.Tensor,
608
+ attention_mask: Optional[torch.Tensor] = None,
609
+ position_ids: Optional[torch.LongTensor] = None,
610
+ past_key_value: Optional[Cache] = None,
611
+ output_attentions: bool = False,
612
+ use_cache: bool = False,
613
+ cache_position: Optional[torch.LongTensor] = None,
614
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
615
+ **kwargs,
616
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
617
+ if output_attentions:
618
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
619
+ logger.warning_once(
620
+ "DeepseekModel is using DeepseekSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
621
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
622
+ )
623
+ return super().forward(
624
+ hidden_states=hidden_states,
625
+ attention_mask=attention_mask,
626
+ position_ids=position_ids,
627
+ past_key_value=past_key_value,
628
+ output_attentions=output_attentions,
629
+ use_cache=use_cache,
630
+ cache_position=cache_position,
631
+ position_embeddings=position_embeddings,
632
+ )
633
+
634
+ bsz, q_len, _ = hidden_states.size()
635
+
636
+ query_states = self.q_proj(hidden_states)
637
+ key_states = self.k_proj(hidden_states)
638
+ value_states = self.v_proj(hidden_states)
639
+
640
+ # use -1 to infer num_heads and num_key_value_heads as they may vary if tensor parallel is used
641
+ query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
642
+ key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
643
+ value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
644
+
645
+ if position_embeddings is None:
646
+ logger.warning_once(
647
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
648
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
649
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
650
+ "removed and `position_embeddings` will be mandatory."
651
+ )
652
+ cos, sin = self.rotary_emb(value_states, position_ids)
653
+ else:
654
+ cos, sin = position_embeddings
655
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
656
+
657
+ if past_key_value is not None:
658
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
659
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
660
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
661
+
662
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
663
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
664
+
665
+ causal_mask = attention_mask
666
+ if attention_mask is not None:
667
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
668
+
669
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
670
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
671
+ if query_states.device.type == "cuda" and causal_mask is not None:
672
+ query_states = query_states.contiguous()
673
+ key_states = key_states.contiguous()
674
+ value_states = value_states.contiguous()
675
+
676
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
677
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
678
+ is_causal = True if causal_mask is None and q_len > 1 else False
679
+
680
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
681
+ query_states,
682
+ key_states,
683
+ value_states,
684
+ attn_mask=causal_mask,
685
+ dropout_p=self.attention_dropout if self.training else 0.0,
686
+ is_causal=is_causal,
687
+ )
688
+
689
+ attn_output = attn_output.transpose(1, 2).contiguous()
690
+ attn_output = attn_output.view(bsz, q_len, -1)
691
+
692
+ attn_output = self.o_proj(attn_output)
693
+
694
+ return attn_output, None, past_key_value
695
+
696
+
697
+ Deepseek_ATTENTION_CLASSES = {
698
+ "eager": DeepseekAttention,
699
+ "flash_attention_2": DeepseekFlashAttention2,
700
+ "sdpa": DeepseekSdpaAttention,
701
+ }
702
+
703
+
704
+ class DeepseekDecoderLayer(nn.Module):
705
+ def __init__(self, config: DeepseekConfig, layer_idx: int):
706
+ super().__init__()
707
+ self.hidden_size = config.hidden_size
708
+
709
+ self.self_attn = Deepseek_ATTENTION_CLASSES[config._attn_implementation](config=config,
710
+ layer_idx=layer_idx)
711
+
712
+ self.mlp = Deepseek_MOE_CLASSES[config.moe_implementation](config) if (config.n_routed_experts is not None and \
713
+ layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0) \
714
+ else DeepseekMLP(config)
715
+ self.input_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
716
+ self.post_attention_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
717
+
718
+ def forward(
719
+ self,
720
+ hidden_states: torch.Tensor,
721
+ attention_mask: Optional[torch.Tensor] = None,
722
+ position_ids: Optional[torch.LongTensor] = None,
723
+ past_key_value: Optional[Cache] = None,
724
+ output_attentions: Optional[bool] = False,
725
+ use_cache: Optional[bool] = False,
726
+ cache_position: Optional[torch.LongTensor] = None,
727
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
728
+ **kwargs,
729
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
730
+ """
731
+ Args:
732
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
733
+ attention_mask (`torch.FloatTensor`, *optional*):
734
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
735
+ query_sequence_length, key_sequence_length)` if default attention is used.
736
+ output_attentions (`bool`, *optional*):
737
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
738
+ returned tensors for more detail.
739
+ use_cache (`bool`, *optional*):
740
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
741
+ (see `past_key_values`).
742
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
743
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
744
+ Indices depicting the position of the input sequence tokens in the sequence
745
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
746
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
747
+ with `head_dim` being the embedding dimension of each attention head.
748
+ kwargs (`dict`, *optional*):
749
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
750
+ into the model
751
+ """
752
+ residual = hidden_states
753
+
754
+ hidden_states = self.input_layernorm(hidden_states)
755
+
756
+ # Self Attention
757
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
758
+ hidden_states=hidden_states,
759
+ attention_mask=attention_mask,
760
+ position_ids=position_ids,
761
+ past_key_value=past_key_value,
762
+ output_attentions=output_attentions,
763
+ use_cache=use_cache,
764
+ cache_position=cache_position,
765
+ position_embeddings=position_embeddings,
766
+ **kwargs,
767
+ )
768
+ hidden_states = residual + hidden_states
769
+
770
+ # Fully Connected
771
+ residual = hidden_states
772
+ hidden_states = self.post_attention_layernorm(hidden_states)
773
+ hidden_states = self.mlp(hidden_states)
774
+ hidden_states = residual + hidden_states
775
+
776
+ outputs = (hidden_states,)
777
+
778
+ if output_attentions:
779
+ outputs += (self_attn_weights,)
780
+
781
+ if use_cache:
782
+ outputs += (present_key_value,)
783
+
784
+ return outputs
785
+
786
+
787
+ Deepseek_START_DOCSTRING = r"""
788
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
789
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
790
+ etc.)
791
+
792
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
793
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
794
+ and behavior.
795
+
796
+ Parameters:
797
+ config ([`DeepseekConfig`]):
798
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
799
+ load the weights associated with the model, only the configuration. Check out the
800
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
801
+ """
802
+
803
+
804
+ @add_start_docstrings(
805
+ "The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
806
+ Deepseek_START_DOCSTRING,
807
+ )
808
+ class DeepseekPreTrainedModel(PreTrainedModel):
809
+ config_class = DeepseekConfig
810
+ base_model_prefix = "model"
811
+ supports_gradient_checkpointing = True
812
+ _no_split_modules = ["DeepseekDecoderLayer"]
813
+ _skip_keys_device_placement = "past_key_values"
814
+ _supports_flash_attn_2 = True
815
+ _supports_sdpa = True
816
+ _supports_cache_class = True
817
+ _supports_quantized_cache = True
818
+ _supports_static_cache = True
819
+
820
+ def _init_weights(self, module):
821
+ std = self.config.initializer_range
822
+ if isinstance(module, nn.Linear):
823
+ module.weight.data.normal_(mean=0.0, std=std)
824
+ if module.bias is not None:
825
+ module.bias.data.zero_()
826
+ elif isinstance(module, nn.Embedding):
827
+ module.weight.data.normal_(mean=0.0, std=std)
828
+ if module.padding_idx is not None:
829
+ module.weight.data[module.padding_idx].zero_()
830
+
831
+
832
+ Deepseek_INPUTS_DOCSTRING = r"""
833
+ Args:
834
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
835
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
836
+ it.
837
+
838
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
839
+ [`PreTrainedTokenizer.__call__`] for details.
840
+
841
+ [What are input IDs?](../glossary#input-ids)
842
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
843
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
844
+
845
+ - 1 for tokens that are **not masked**,
846
+ - 0 for tokens that are **masked**.
847
+
848
+ [What are attention masks?](../glossary#attention-mask)
849
+
850
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
851
+ [`PreTrainedTokenizer.__call__`] for details.
852
+
853
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
854
+ `past_key_values`).
855
+
856
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
857
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
858
+ information on the default strategy.
859
+
860
+ - 1 indicates the head is **not masked**,
861
+ - 0 indicates the head is **masked**.
862
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
863
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
864
+ config.n_positions - 1]`.
865
+
866
+ [What are position IDs?](../glossary#position-ids)
867
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
868
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
869
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
870
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
871
+
872
+ Two formats are allowed:
873
+ - a [`~cache_utils.Cache`] instance, see our
874
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
875
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
876
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
877
+ cache format.
878
+
879
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
880
+ legacy cache format will be returned.
881
+
882
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
883
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
884
+ of shape `(batch_size, sequence_length)`.
885
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
886
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
887
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
888
+ model's internal embedding lookup matrix.
889
+ use_cache (`bool`, *optional*):
890
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
891
+ `past_key_values`).
892
+ output_attentions (`bool`, *optional*):
893
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
894
+ tensors for more detail.
895
+ output_hidden_states (`bool`, *optional*):
896
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
897
+ more detail.
898
+ return_dict (`bool`, *optional*):
899
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
900
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
901
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
902
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
903
+ the complete sequence length.
904
+ """
905
+
906
+
907
+ @add_start_docstrings(
908
+ "The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
909
+ Deepseek_START_DOCSTRING,
910
+ )
911
+ class DeepseekModel(DeepseekPreTrainedModel):
912
+ """
913
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekDecoderLayer`]
914
+
915
+ Args:
916
+ config: DeepseekConfig
917
+ """
918
+
919
+ def __init__(self, config: DeepseekConfig):
920
+ super().__init__(config)
921
+ self.padding_idx = config.pad_token_id
922
+ self.vocab_size = config.vocab_size
923
+
924
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
925
+ self.layers = nn.ModuleList(
926
+ [DeepseekDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
927
+ )
928
+ self.norm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
929
+ self.rotary_emb = DeepseekRotaryEmbedding(config=config)
930
+
931
+ self.gradient_checkpointing = False
932
+ if getattr(config, "pretraining_tp", 1) != 1:
933
+ logger.warn("`pretraining_tp` is deprecated, please use `model.tensor_parallel` instead.")
934
+
935
+ # Initialize weights and apply final processing
936
+ self.post_init()
937
+
938
+ def get_input_embeddings(self):
939
+ return self.embed_tokens
940
+
941
+ def set_input_embeddings(self, value):
942
+ self.embed_tokens = value
943
+
944
+ @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
945
+ def forward(
946
+ self,
947
+ input_ids: torch.LongTensor = None,
948
+ attention_mask: Optional[torch.Tensor] = None,
949
+ position_ids: Optional[torch.LongTensor] = None,
950
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
951
+ inputs_embeds: Optional[torch.FloatTensor] = None,
952
+ use_cache: Optional[bool] = None,
953
+ output_attentions: Optional[bool] = None,
954
+ output_hidden_states: Optional[bool] = None,
955
+ return_dict: Optional[bool] = None,
956
+ cache_position: Optional[torch.LongTensor] = None,
957
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
958
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
959
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
960
+ output_hidden_states = (
961
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
962
+ )
963
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
964
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
965
+
966
+ if (input_ids is None) ^ (inputs_embeds is not None):
967
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
968
+
969
+ if self.gradient_checkpointing and self.training and use_cache:
970
+ logger.warning_once(
971
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
972
+ )
973
+ use_cache = False
974
+
975
+ if inputs_embeds is None:
976
+ inputs_embeds = self.embed_tokens(input_ids)
977
+
978
+ # kept for BC (non `Cache` `past_key_values` inputs)
979
+ return_legacy_cache = False
980
+ if use_cache and not isinstance(past_key_values, Cache):
981
+ return_legacy_cache = True
982
+ if past_key_values is None:
983
+ past_key_values = DynamicCache()
984
+ else:
985
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
986
+ logger.warning_once(
987
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
988
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
989
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
990
+ )
991
+
992
+ if cache_position is None:
993
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
994
+ cache_position = torch.arange(
995
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
996
+ )
997
+ if position_ids is None:
998
+ position_ids = cache_position.unsqueeze(0)
999
+
1000
+ causal_mask = self._update_causal_mask(
1001
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1002
+ )
1003
+ hidden_states = inputs_embeds
1004
+
1005
+ # create position embeddings to be shared across the decoder layers
1006
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1007
+
1008
+ # decoder layers
1009
+ all_hidden_states = () if output_hidden_states else None
1010
+ all_self_attns = () if output_attentions else None
1011
+ next_decoder_cache = None
1012
+
1013
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
1014
+ if output_hidden_states:
1015
+ all_hidden_states += (hidden_states,)
1016
+
1017
+ if self.gradient_checkpointing and self.training:
1018
+ layer_outputs = self._gradient_checkpointing_func(
1019
+ decoder_layer.__call__,
1020
+ hidden_states,
1021
+ causal_mask,
1022
+ position_ids,
1023
+ past_key_values,
1024
+ output_attentions,
1025
+ use_cache,
1026
+ cache_position,
1027
+ position_embeddings,
1028
+ )
1029
+ else:
1030
+ layer_outputs = decoder_layer(
1031
+ hidden_states,
1032
+ attention_mask=causal_mask,
1033
+ position_ids=position_ids,
1034
+ past_key_value=past_key_values,
1035
+ output_attentions=output_attentions,
1036
+ use_cache=use_cache,
1037
+ cache_position=cache_position,
1038
+ position_embeddings=position_embeddings,
1039
+ **flash_attn_kwargs,
1040
+ )
1041
+
1042
+ hidden_states = layer_outputs[0]
1043
+
1044
+ if use_cache:
1045
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1046
+
1047
+ if output_attentions:
1048
+ all_self_attns += (layer_outputs[1],)
1049
+
1050
+ hidden_states = self.norm(hidden_states)
1051
+
1052
+ # add hidden states from the last decoder layer
1053
+ if output_hidden_states:
1054
+ all_hidden_states += (hidden_states,)
1055
+
1056
+ next_cache = next_decoder_cache if use_cache else None
1057
+ if return_legacy_cache:
1058
+ next_cache = next_cache.to_legacy_cache()
1059
+
1060
+ if not return_dict:
1061
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1062
+ return BaseModelOutputWithPast(
1063
+ last_hidden_state=hidden_states,
1064
+ past_key_values=next_cache,
1065
+ hidden_states=all_hidden_states,
1066
+ attentions=all_self_attns,
1067
+ )
1068
+
1069
+ def _update_causal_mask(
1070
+ self,
1071
+ attention_mask: torch.Tensor,
1072
+ input_tensor: torch.Tensor,
1073
+ cache_position: torch.Tensor,
1074
+ past_key_values: Cache,
1075
+ output_attentions: bool,
1076
+ ):
1077
+ if self.config._attn_implementation == "flash_attention_2":
1078
+ if attention_mask is not None and 0.0 in attention_mask:
1079
+ return attention_mask
1080
+ return None
1081
+
1082
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1083
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1084
+ # to infer the attention mask.
1085
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1086
+ using_static_cache = isinstance(past_key_values, StaticCache)
1087
+
1088
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1089
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1090
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1091
+ attention_mask,
1092
+ inputs_embeds=input_tensor,
1093
+ past_key_values_length=past_seen_tokens,
1094
+ is_training=self.training,
1095
+ ):
1096
+ return None
1097
+
1098
+ dtype, device = input_tensor.dtype, input_tensor.device
1099
+ sequence_length = input_tensor.shape[1]
1100
+ if using_static_cache:
1101
+ target_length = past_key_values.get_max_cache_shape()
1102
+ else:
1103
+ target_length = (
1104
+ attention_mask.shape[-1]
1105
+ if isinstance(attention_mask, torch.Tensor)
1106
+ else past_seen_tokens + sequence_length + 1
1107
+ )
1108
+
1109
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1110
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
1111
+ attention_mask,
1112
+ sequence_length=sequence_length,
1113
+ target_length=target_length,
1114
+ dtype=dtype,
1115
+ device=device,
1116
+ cache_position=cache_position,
1117
+ batch_size=input_tensor.shape[0],
1118
+ )
1119
+
1120
+ if (
1121
+ self.config._attn_implementation == "sdpa"
1122
+ and attention_mask is not None
1123
+ and attention_mask.device.type == "cuda"
1124
+ and not output_attentions
1125
+ ):
1126
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1127
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1128
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1129
+ min_dtype = torch.finfo(dtype).min
1130
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1131
+
1132
+ return causal_mask
1133
+
1134
+ @staticmethod
1135
+ def _prepare_4d_causal_attention_mask_with_cache_position(
1136
+ attention_mask: torch.Tensor,
1137
+ sequence_length: int,
1138
+ target_length: int,
1139
+ dtype: torch.dtype,
1140
+ device: torch.device,
1141
+ cache_position: torch.Tensor,
1142
+ batch_size: int,
1143
+ **kwargs,
1144
+ ):
1145
+ """
1146
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
1147
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
1148
+
1149
+ Args:
1150
+ attention_mask (`torch.Tensor`):
1151
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
1152
+ `(batch_size, 1, query_length, key_value_length)`.
1153
+ sequence_length (`int`):
1154
+ The sequence length being processed.
1155
+ target_length (`int`):
1156
+ The target length: when generating with static cache, the mask should be as long as the static cache,
1157
+ to account for the 0 padding, the part of the cache that is not filled yet.
1158
+ dtype (`torch.dtype`):
1159
+ The dtype to use for the 4D attention mask.
1160
+ device (`torch.device`):
1161
+ The device to plcae the 4D attention mask on.
1162
+ cache_position (`torch.Tensor`):
1163
+ Indices depicting the position of the input sequence tokens in the sequence.
1164
+ batch_size (`torch.Tensor`):
1165
+ Batch size.
1166
+ """
1167
+ if attention_mask is not None and attention_mask.dim() == 4:
1168
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
1169
+ causal_mask = attention_mask
1170
+ else:
1171
+ min_dtype = torch.finfo(dtype).min
1172
+ causal_mask = torch.full(
1173
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1174
+ )
1175
+ if sequence_length != 1:
1176
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1177
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1178
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
1179
+ if attention_mask is not None:
1180
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1181
+ mask_length = attention_mask.shape[-1]
1182
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1183
+ padding_mask = padding_mask == 0
1184
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1185
+ padding_mask, min_dtype
1186
+ )
1187
+
1188
+ return causal_mask
1189
+
1190
+
1191
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
1192
+
1193
+
1194
+ class DeepseekForCausalLM(DeepseekPreTrainedModel, GenerationMixin):
1195
+ _tied_weights_keys = ["lm_head.weight"]
1196
+
1197
+ def __init__(self, config):
1198
+ super().__init__(config)
1199
+ self.model = DeepseekModel(config)
1200
+ self.vocab_size = config.vocab_size
1201
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1202
+
1203
+ # Initialize weights and apply final processing
1204
+ self.post_init()
1205
+
1206
+ def get_input_embeddings(self):
1207
+ return self.model.embed_tokens
1208
+
1209
+ def set_input_embeddings(self, value):
1210
+ self.model.embed_tokens = value
1211
+
1212
+ def get_output_embeddings(self):
1213
+ return self.lm_head
1214
+
1215
+ def set_output_embeddings(self, new_embeddings):
1216
+ self.lm_head = new_embeddings
1217
+
1218
+ def set_decoder(self, decoder):
1219
+ self.model = decoder
1220
+
1221
+ def get_decoder(self):
1222
+ return self.model
1223
+
1224
+ @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
1225
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1226
+ def forward(
1227
+ self,
1228
+ input_ids: torch.LongTensor = None,
1229
+ attention_mask: Optional[torch.Tensor] = None,
1230
+ position_ids: Optional[torch.LongTensor] = None,
1231
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1232
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1233
+ labels: Optional[torch.LongTensor] = None,
1234
+ use_cache: Optional[bool] = None,
1235
+ output_attentions: Optional[bool] = None,
1236
+ output_hidden_states: Optional[bool] = None,
1237
+ return_dict: Optional[bool] = None,
1238
+ cache_position: Optional[torch.LongTensor] = None,
1239
+ num_logits_to_keep: int = 0,
1240
+ **kwargs: Unpack[KwargsForCausalLM],
1241
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1242
+ r"""
1243
+ Args:
1244
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1245
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1246
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1247
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1248
+
1249
+ num_logits_to_keep (`int`, *optional*):
1250
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1251
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1252
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1253
+
1254
+ Returns:
1255
+
1256
+ Example:
1257
+
1258
+ ```python
1259
+ >>> from transformers import AutoTokenizer
1260
+
1261
+ >>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1262
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1263
+
1264
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1265
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1266
+
1267
+ >>> # Generate
1268
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1269
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1270
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1271
+ ```"""
1272
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1273
+ output_hidden_states = (
1274
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1275
+ )
1276
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1277
+
1278
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1279
+ outputs = self.model(
1280
+ input_ids=input_ids,
1281
+ attention_mask=attention_mask,
1282
+ position_ids=position_ids,
1283
+ past_key_values=past_key_values,
1284
+ inputs_embeds=inputs_embeds,
1285
+ use_cache=use_cache,
1286
+ output_attentions=output_attentions,
1287
+ output_hidden_states=output_hidden_states,
1288
+ return_dict=return_dict,
1289
+ )
1290
+
1291
+ hidden_states = outputs[0]
1292
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1293
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1294
+
1295
+ loss = None
1296
+ if labels is not None:
1297
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
1298
+
1299
+ if not return_dict:
1300
+ output = (logits,) + outputs[1:]
1301
+ return (loss,) + output if loss is not None else output
1302
+
1303
+ return CausalLMOutputWithPast(
1304
+ loss=loss,
1305
+ logits=logits,
1306
+ past_key_values=outputs.past_key_values,
1307
+ hidden_states=outputs.hidden_states,
1308
+ attentions=outputs.attentions,
1309
+ )
1310
+
1311
+
1312
+ @add_start_docstrings(
1313
+ """
1314
+ The Deepseek Model transformer with a sequence classification head on top (linear layer).
1315
+
1316
+ [`DeepseekForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1317
+ (e.g. GPT-2) do.
1318
+
1319
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1320
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1321
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1322
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1323
+ each row of the batch).
1324
+ """,
1325
+ Deepseek_START_DOCSTRING,
1326
+ )
1327
+ class DeepseekForSequenceClassification(DeepseekPreTrainedModel):
1328
+ def __init__(self, config):
1329
+ super().__init__(config)
1330
+ self.num_labels = config.num_labels
1331
+ self.model = DeepseekModel(config)
1332
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1333
+
1334
+ # Initialize weights and apply final processing
1335
+ self.post_init()
1336
+
1337
+ def get_input_embeddings(self):
1338
+ return self.model.embed_tokens
1339
+
1340
+ def set_input_embeddings(self, value):
1341
+ self.model.embed_tokens = value
1342
+
1343
+ @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
1344
+ def forward(
1345
+ self,
1346
+ input_ids: Optional[torch.LongTensor] = None,
1347
+ attention_mask: Optional[torch.Tensor] = None,
1348
+ position_ids: Optional[torch.LongTensor] = None,
1349
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1350
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1351
+ labels: Optional[torch.LongTensor] = None,
1352
+ use_cache: Optional[bool] = None,
1353
+ output_attentions: Optional[bool] = None,
1354
+ output_hidden_states: Optional[bool] = None,
1355
+ return_dict: Optional[bool] = None,
1356
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1357
+ r"""
1358
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1359
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1360
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1361
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1362
+ """
1363
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1364
+
1365
+ transformer_outputs = self.model(
1366
+ input_ids,
1367
+ attention_mask=attention_mask,
1368
+ position_ids=position_ids,
1369
+ past_key_values=past_key_values,
1370
+ inputs_embeds=inputs_embeds,
1371
+ use_cache=use_cache,
1372
+ output_attentions=output_attentions,
1373
+ output_hidden_states=output_hidden_states,
1374
+ return_dict=return_dict,
1375
+ )
1376
+ hidden_states = transformer_outputs[0]
1377
+ logits = self.score(hidden_states)
1378
+
1379
+ if input_ids is not None:
1380
+ batch_size = input_ids.shape[0]
1381
+ else:
1382
+ batch_size = inputs_embeds.shape[0]
1383
+
1384
+ if self.config.pad_token_id is None and batch_size != 1:
1385
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1386
+ if self.config.pad_token_id is None:
1387
+ sequence_lengths = -1
1388
+ else:
1389
+ if input_ids is not None:
1390
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1391
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1392
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1393
+ sequence_lengths = sequence_lengths.to(logits.device)
1394
+ else:
1395
+ sequence_lengths = -1
1396
+
1397
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1398
+
1399
+ loss = None
1400
+ if labels is not None:
1401
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
1402
+
1403
+ if not return_dict:
1404
+ output = (pooled_logits,) + transformer_outputs[1:]
1405
+ return ((loss,) + output) if loss is not None else output
1406
+
1407
+ return SequenceClassifierOutputWithPast(
1408
+ loss=loss,
1409
+ logits=pooled_logits,
1410
+ past_key_values=transformer_outputs.past_key_values,
1411
+ hidden_states=transformer_outputs.hidden_states,
1412
+ attentions=transformer_outputs.attentions,
1413
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|role_sep|>",
4
+ "<|message_sep|>",
5
+ "[",
6
+ "]",
7
+ {
8
+ "content": "<|role_sep|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ {
15
+ "content": "<|message_sep|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ {
22
+ "content": "[",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ {
29
+ "content": "]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ ],
36
+ "bos_token": {
37
+ "content": "<s>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false
42
+ },
43
+ "eos_token": {
44
+ "content": "<|message_sep|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false
49
+ }
50
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc8146adda45ec7f4876d832f80b55e8dd3e1fa648fbd54d059a601ee73cea3
3
+ size 10678892
tokenizer_config.json ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens": {
3
+ "1": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128000": {
12
+ "content": "<|role_sep|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128001": {
20
+ "content": "<|message_sep|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "61": {
28
+ "content": "[",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "63": {
36
+ "content": "]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "added_tokens_decoder": {
45
+ "1": {
46
+ "content": "<s>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "61": {
54
+ "content": "[",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "63": {
62
+ "content": "]",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "128000": {
70
+ "content": "<|role_sep|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "128001": {
78
+ "content": "<|message_sep|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ }
85
+ },
86
+ "additional_special_tokens": [
87
+ "<|role_sep|>",
88
+ "<|message_sep|>",
89
+ "[",
90
+ "]",
91
+ "<|role_sep|>",
92
+ "<|message_sep|>",
93
+ "[",
94
+ "]"
95
+ ],
96
+ "bos_token": "<s>",
97
+ "chat_template": "{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}",
98
+ "clean_up_tokenization_spaces": true,
99
+ "eos_token": "<|message_sep|>",
100
+ "extra_special_tokens": {},
101
+ "model_max_length": 1000000000000000019884624838656,
102
+ "tokenizer_class": "PreTrainedTokenizerFast",
103
+ "unk_token": null
104
+ }