ggospodinov commited on
Commit
ec1dc1f
·
verified ·
1 Parent(s): 8b43d4b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - ru
5
+ - en
6
+ pipeline_tag: automatic-speech-recognition
7
+ ---
8
+
9
+ # GigaAM-v3
10
+
11
+ GigaAM-v3 is a Conformer-based foundation model with 220–240M parameters, pretrained on diverse Russian speech data using the HuBERT-CTC objective.
12
+ It is the third generation of the GigaAM family and provides state-of-the-art performance on Russian ASR across a wide range of domains.
13
+
14
+ GigaAM-v3 includes the following model variants:
15
+ - `ssl` — self-supervised HuBERT–CTC encoder pre-trained on 700,000 hours of Russian speech
16
+ - `ctc` — ASR model fine-tuned with a CTC decoder
17
+ - `rnnt` — ASR model fine-tuned with an RNN-T decoder
18
+ - `e2e_ctc` — end-to-end CTC model with punctuation and text normalization
19
+ - `e2e_rnnt` — end-to-end RNN-T model with punctuation and text normalization
20
+
21
+ `GigaAM-v3` training incorporates new internal datasets: callcenter conversations, speech with background music, natural speech, and speech with atypical characteristics.
22
+ the models perform on average **30%** better on these new domains, while maintaining the same quality as previous GigaAM generations on public benchmarks.
23
+
24
+ The table below reports the Word Error Rate (%) for `GigaAM-v3` and other existing models over diverse domains.
25
+
26
+ | Set Name | V3_CTC | V3_RNNT | T-One + LM | Whisper |
27
+ |:------------------|-------:|--------:|-----------:|--------:|
28
+ | Open Datasets | 3.0 | 2.6 | 5.7 | 12.0 |
29
+ | Golos Farfield | 4.5 | 3.9 | 12.2 | 16.7 |
30
+ | Natural Speech | 7.8 | 6.9 | 14.5 | 13.6 |
31
+ | Disordered Speech | 20.6 | 19.2 | 51.0 | 59.3 |
32
+ | Callcenter | 10.3 | 9.5 | 13.5 | 23.9 |
33
+ | **Average** | **9.2**| **8.4** | 19.4 | 25.1 |
34
+
35
+ The end-to-end ASR models (`e2e_ctc` and `e2e_rnnt`) produce punctuated, normalized text directly.
36
+ In end-to-end ASR comparisons of `e2e_ctc` and `e2e_rnnt` against Whisper-large-v3, using Gemini 2.5 Pro as an LLM-as-a-judge, GigaAM-v3 models win by an average margin of **70:30**.
37
+
38
+ For detailed results, see [metrics](https://github.com/salute-developers/GigaAM/blob/main/evaluation.md).
39
+
40
+ ## Usage
41
+ ```python
42
+ from transformers import AutoModel
43
+
44
+ revision = "e2e_rnnt" # can be any v3 model: ssl, ctc, rnnt, e2e_ctc, e2e_rnnt
45
+ model = AutoModel.from_pretrained(
46
+ "ai-sage/GigaAM-v3",
47
+ revision=revision,
48
+ trust_remote_code=True,
49
+ )
50
+
51
+ transcription = model.transcribe("example.wav")
52
+ print(transcription)
53
+ ```
54
+
55
+ Recommended versions:
56
+ - `torch==2.8.0`, `torchaudio==2.8.0`
57
+ - `transformers==4.57.1`
58
+ - `pyannote-audio==4.0.0`, `torchcodec==0.7.0`
59
+ - (any) `hydra-core`, `omegaconf`, `sentencepiece`
60
+
61
+ Full usage guide can be found in the [example](https://github.com/salute-developers/GigaAM/blob/main/colab_example.ipynb).
62
+
63
+ **License:** MIT
64
+
65
+ **Paper:** [GigaAM: Efficient Self-Supervised Learner for Speech Recognition (InterSpeech 2025)](https://arxiv.org/abs/2506.01192)