Upload 11 files (#1)
Browse files- Upload 11 files (d037847b233853342b7fc213516a40d7e60b0a01)
- README.md +76 -3
- config.json +126 -0
- configuration_gigarembed.py +89 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +266 -0
- modeling_gigarembed.py +448 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2082 -0
README.md
CHANGED
@@ -1,3 +1,76 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Giga-Embeddings-instruct
|
2 |
+
|
3 |
+
|
4 |
+
Эта модель имеет 27 слоев, а размер эмбеддинга составляет 2048.
|
5 |
+
|
6 |
+
## Использование
|
7 |
+
|
8 |
+
Ниже приведен пример кодирования запросов и текстов.
|
9 |
+
|
10 |
+
|
11 |
+
### Transformers
|
12 |
+
|
13 |
+
```python
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from transformers import AutoTokenizer, AutoModel
|
18 |
+
|
19 |
+
# Each query needs to be accompanied by an corresponding instruction describing the task.
|
20 |
+
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
|
21 |
+
|
22 |
+
query_prefix = task_name_to_instruct["example"] + "\nquery: "
|
23 |
+
queries = [
|
24 |
+
'are judo throws allowed in wrestling?',
|
25 |
+
'how to become a radiology technician in michigan?'
|
26 |
+
]
|
27 |
+
|
28 |
+
# No instruction needed for retrieval passages
|
29 |
+
passage_prefix = ""
|
30 |
+
passages = [
|
31 |
+
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
|
32 |
+
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
|
33 |
+
]
|
34 |
+
|
35 |
+
# load model with tokenizer
|
36 |
+
model_path = os.getcwd() ## TODO ???
|
37 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
38 |
+
|
39 |
+
# get the embeddings
|
40 |
+
query_embeddings = model.encode(queries, instruction=query_prefix)
|
41 |
+
passage_embeddings = model.encode(passages, instruction=passage_prefix)
|
42 |
+
|
43 |
+
# normalize embeddings
|
44 |
+
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
|
45 |
+
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)
|
46 |
+
|
47 |
+
scores = (query_embeddings @ passage_embeddings.T) * 100
|
48 |
+
print(scores.tolist())
|
49 |
+
```
|
50 |
+
|
51 |
+
## Поддерживаемые языки
|
52 |
+
|
53 |
+
Эта модель инициализирована pretrain моделью GigaChat и дополнительно обучена на смеси английских и русских данных. Однако, поскольку pretrain GigaChat'a делался в основном на русскоязычных данных, мы рекомендуем использовать эту модель только для русского языка.
|
54 |
+
|
55 |
+
## FAQ
|
56 |
+
|
57 |
+
1. Нужно ли добавлять инструкции к запросу?
|
58 |
+
|
59 |
+
Да, именно так модель обучалась, иначе вы увидите снижение производительности. Определение задачи должно быть инструкцией в одном предложении, которая описывает задачу. Это способ настройки текстовых эмбеддингов для разных сценариев с помощью инструкций на естественном языке.
|
60 |
+
|
61 |
+
Пожалуйста, ознакомьтесь с (## TODO link to instructions) для инструкций, которые мы использовали для замеров.
|
62 |
+
|
63 |
+
С другой стороны, добавлять инструкции на сторону документа не требуется.
|
64 |
+
|
65 |
+
2. Почему мои воспроизведённые результаты немного отличаются от указанных в карточке модели?
|
66 |
+
|
67 |
+
Разные версии библиотек transformers и pytorch могут вызывать незначительные, но ненулевые различия в производительности.
|
68 |
+
|
69 |
+
|
70 |
+
## Ограничения
|
71 |
+
|
72 |
+
Использование этой модели для входных данных, содержащих более 4096 токенов, невозможно.
|
73 |
+
|
74 |
+
## Лицензия
|
75 |
+
|
76 |
+
MIT
|
config.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/jovyan/ekolodin/models/gigarembed-release-v1/config.json",
|
3 |
+
"add_eos": true,
|
4 |
+
"add_pad_token": true,
|
5 |
+
"architectures": [
|
6 |
+
"GigarEmbedModel"
|
7 |
+
],
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_gigarembed.GigarEmbedConfig",
|
10 |
+
"AutoModel": "modeling_gigarembed.GigarEmbedModel"
|
11 |
+
},
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"is_mask_instruction": false,
|
14 |
+
"latent_attention_config": {
|
15 |
+
"cross_dim_head": 2048,
|
16 |
+
"hidden_dim": 2048,
|
17 |
+
"latent_dim": 2048,
|
18 |
+
"model_type": "latent_attention"
|
19 |
+
},
|
20 |
+
"mask_type": "b",
|
21 |
+
"model_type": "gigarembed",
|
22 |
+
"padding_side": "right",
|
23 |
+
"text_config": {
|
24 |
+
"_name_or_path": "/home/jovyan/ekolodin/models/gigarembed-release-v1/",
|
25 |
+
"activation_checkpoint_layers_num": null,
|
26 |
+
"add_cross_attention": false,
|
27 |
+
"architectures": [
|
28 |
+
"LlamaForCausalLM"
|
29 |
+
],
|
30 |
+
"attention_bias": false,
|
31 |
+
"attention_dropout": 0.0,
|
32 |
+
"attention_hidden_size": null,
|
33 |
+
"attention_type": "LlamaPackedAttention",
|
34 |
+
"bad_words_ids": null,
|
35 |
+
"begin_suppress_tokens": null,
|
36 |
+
"bos_token_id": 1,
|
37 |
+
"chunk_size_feed_forward": 0,
|
38 |
+
"cross_attention_hidden_size": null,
|
39 |
+
"decoder_start_token_id": null,
|
40 |
+
"deterministic_attention": false,
|
41 |
+
"diversity_penalty": 0.0,
|
42 |
+
"do_sample": false,
|
43 |
+
"early_stopping": false,
|
44 |
+
"encoder_no_repeat_ngram_size": 0,
|
45 |
+
"eos_token_id": 2,
|
46 |
+
"exponential_decay_length_penalty": null,
|
47 |
+
"finetuning_task": null,
|
48 |
+
"forced_bos_token_id": null,
|
49 |
+
"forced_eos_token_id": null,
|
50 |
+
"freeze_non_embed": false,
|
51 |
+
"fused_mlp": true,
|
52 |
+
"fused_mlp_checkpoint_lvl": 3,
|
53 |
+
"head_dim": 128,
|
54 |
+
"hidden_act": "silu",
|
55 |
+
"hidden_size": 2048,
|
56 |
+
"id2label": {
|
57 |
+
"0": "LABEL_0",
|
58 |
+
"1": "LABEL_1"
|
59 |
+
},
|
60 |
+
"init_device": "meta",
|
61 |
+
"initializer_range": 0.02,
|
62 |
+
"intermediate_size": 11008,
|
63 |
+
"is_decoder": false,
|
64 |
+
"is_encoder_decoder": false,
|
65 |
+
"label2id": {
|
66 |
+
"LABEL_0": 0,
|
67 |
+
"LABEL_1": 1
|
68 |
+
},
|
69 |
+
"length_penalty": 1.0,
|
70 |
+
"loss_inplace_backward": true,
|
71 |
+
"max_length": 20,
|
72 |
+
"max_position_embeddings": 32768,
|
73 |
+
"max_window_layers": 36,
|
74 |
+
"min_length": 0,
|
75 |
+
"mlp_bias": false,
|
76 |
+
"model_type": "llama",
|
77 |
+
"no_repeat_ngram_size": 0,
|
78 |
+
"num_attention_heads": 16,
|
79 |
+
"num_beam_groups": 1,
|
80 |
+
"num_beams": 1,
|
81 |
+
"num_hidden_layers": 27,
|
82 |
+
"num_key_value_heads": 2,
|
83 |
+
"num_return_sequences": 1,
|
84 |
+
"output_attentions": false,
|
85 |
+
"output_hidden_states": false,
|
86 |
+
"output_scores": false,
|
87 |
+
"pad_token_id": 2,
|
88 |
+
"prefix": null,
|
89 |
+
"pretraining_tp": 1,
|
90 |
+
"problem_type": null,
|
91 |
+
"pruned_heads": {},
|
92 |
+
"remove_invalid_values": false,
|
93 |
+
"repetition_penalty": 1.0,
|
94 |
+
"return_dict": true,
|
95 |
+
"return_dict_in_generate": false,
|
96 |
+
"rms_norm_eps": 1e-06,
|
97 |
+
"rope_scaling": null,
|
98 |
+
"rope_theta": 1300,
|
99 |
+
"sep_token_id": null,
|
100 |
+
"sliding_window": null,
|
101 |
+
"sp_split_type": "equal",
|
102 |
+
"suppress_tokens": null,
|
103 |
+
"task_specific_params": null,
|
104 |
+
"temperature": 1.0,
|
105 |
+
"tf_legacy_loss": false,
|
106 |
+
"tie_encoder_decoder": false,
|
107 |
+
"tie_word_embeddings": false,
|
108 |
+
"tokenizer_class": null,
|
109 |
+
"top_k": 50,
|
110 |
+
"top_p": 1.0,
|
111 |
+
"torch_dtype": "float32",
|
112 |
+
"torchscript": false,
|
113 |
+
"tp_group": null,
|
114 |
+
"tp_size": 1,
|
115 |
+
"typical_p": 1.0,
|
116 |
+
"unk_token_id": 0,
|
117 |
+
"use_bfloat16": false,
|
118 |
+
"use_cache": true,
|
119 |
+
"use_mrope": false,
|
120 |
+
"use_sliding_window": false,
|
121 |
+
"varlen_input": false,
|
122 |
+
"vocab_size": 128256
|
123 |
+
},
|
124 |
+
"torch_dtype": "float32",
|
125 |
+
"transformers_version": "4.40.0.dev0"
|
126 |
+
}
|
configuration_gigarembed.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
from transformers import AutoConfig
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.models.auto import CONFIG_MAPPING
|
5 |
+
from transformers.models.llama import LlamaConfig
|
6 |
+
|
7 |
+
GIGAREMBED_TYPE = "gigarembed"
|
8 |
+
LATENT_ATTENTION_TYPE = "latent_attention"
|
9 |
+
BIDIR_LLAMA_TYPE = "bidir_llama"
|
10 |
+
|
11 |
+
class GigarEmbedConfig(PretrainedConfig):
|
12 |
+
model_type = "gigarembed"
|
13 |
+
is_composition = False
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
latent_attention_config=None,
|
18 |
+
text_config=None,
|
19 |
+
padding_side: Literal["right", "left"]="right",
|
20 |
+
add_pad_token: bool=True,
|
21 |
+
is_mask_instruction: bool = True,
|
22 |
+
add_eos: bool=True,
|
23 |
+
mask_type: str="b",
|
24 |
+
**kwargs,
|
25 |
+
):
|
26 |
+
if isinstance(latent_attention_config, dict):
|
27 |
+
latent_attention_config["model_type"] = (
|
28 |
+
latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
|
29 |
+
)
|
30 |
+
latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)
|
31 |
+
elif latent_attention_config is None:
|
32 |
+
latent_attention_config = CONFIG_MAPPING[LATENT_ATTENTION_TYPE]()
|
33 |
+
|
34 |
+
self.latent_attention_config = latent_attention_config
|
35 |
+
|
36 |
+
if isinstance(text_config, dict):
|
37 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
38 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
39 |
+
elif text_config is None:
|
40 |
+
text_config = None
|
41 |
+
|
42 |
+
self.text_config = text_config
|
43 |
+
self.padding_side = padding_side
|
44 |
+
self.is_mask_instruction = is_mask_instruction
|
45 |
+
self.add_pad_token = add_pad_token
|
46 |
+
self.add_eos = add_eos
|
47 |
+
self.mask_type = mask_type
|
48 |
+
if "hidden_size" in kwargs:
|
49 |
+
self.hidden_size = kwargs["hidden_size"]
|
50 |
+
else:
|
51 |
+
self.hidden_size = 2560
|
52 |
+
|
53 |
+
super().__init__(**kwargs)
|
54 |
+
|
55 |
+
|
56 |
+
class LatentAttentionConfig(PretrainedConfig):
|
57 |
+
model_type = LATENT_ATTENTION_TYPE
|
58 |
+
is_composition = False
|
59 |
+
_name_or_path = "latent_attention"
|
60 |
+
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
num_latents_value: int=512,
|
64 |
+
num_cross_heads: int=8,
|
65 |
+
output_normalize: bool=True,
|
66 |
+
hidden_dim: int=2560,
|
67 |
+
latent_dim: int=2560,
|
68 |
+
cross_dim_head: int=2560,
|
69 |
+
**kwargs,
|
70 |
+
):
|
71 |
+
self.num_latents_value = num_latents_value
|
72 |
+
self.num_cross_heads = num_cross_heads
|
73 |
+
self.output_normalize = output_normalize
|
74 |
+
self.hidden_dim = hidden_dim
|
75 |
+
self.latent_dim = latent_dim
|
76 |
+
self.cross_dim_head = cross_dim_head
|
77 |
+
|
78 |
+
|
79 |
+
class BidirectionalLlamaConfig(LlamaConfig):
|
80 |
+
model_type = BIDIR_LLAMA_TYPE
|
81 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
82 |
+
|
83 |
+
AutoConfig.register(GIGAREMBED_TYPE, GigarEmbedConfig)
|
84 |
+
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)
|
85 |
+
AutoConfig.register(BIDIR_LLAMA_TYPE, BidirectionalLlamaConfig)
|
86 |
+
|
87 |
+
GigarEmbedConfig.register_for_auto_class()
|
88 |
+
LatentAttentionConfig.register_for_auto_class()
|
89 |
+
BidirectionalLlamaConfig.register_for_auto_class()
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f5bdcf6ab584d8e3fa1e53ad3061a203125be81e043b11e7c867e04670e8aa7
|
3 |
+
size 4913926592
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29f27ca086d141ee606037884f8bb93176a61032230ba1ca92ba0c2fe7615cb2
|
3 |
+
size 4932780264
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60c4fbeddfae2f00234d2d9e6646cd7a11914454eaf46e278f85bfb088d1417f
|
3 |
+
size 270557856
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 10117234688
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_kv.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_out.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"latent_attention_model.cross_attend_blocks.0.fn.to_q.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"latent_attention_model.cross_attend_blocks.0.norm.bias": "model-00001-of-00003.safetensors",
|
10 |
+
"latent_attention_model.cross_attend_blocks.0.norm.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.bias": "model-00001-of-00003.safetensors",
|
12 |
+
"latent_attention_model.cross_attend_blocks.0.norm_context.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.bias": "model-00001-of-00003.safetensors",
|
14 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.0.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.bias": "model-00001-of-00003.safetensors",
|
16 |
+
"latent_attention_model.cross_attend_blocks.1.fn.net.2.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"latent_attention_model.cross_attend_blocks.1.norm.bias": "model-00001-of-00003.safetensors",
|
18 |
+
"latent_attention_model.cross_attend_blocks.1.norm.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"latent_attention_model.latents": "model-00001-of-00003.safetensors",
|
20 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
37 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
39 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
45 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
46 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
47 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
48 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
121 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
123 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
124 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
130 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
131 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
132 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
133 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
134 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
135 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
136 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
138 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
154 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
157 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
162 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
163 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
165 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
167 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
169 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
170 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
171 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
172 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
173 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
174 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
175 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
177 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
179 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
180 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
181 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
183 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
184 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
185 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
186 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
187 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
188 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
189 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
190 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
191 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
192 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
198 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
199 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
200 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
201 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
202 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
203 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
204 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
205 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
206 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
207 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
208 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
209 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
210 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
211 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
212 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
213 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
214 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
215 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
225 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
226 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
227 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
228 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
229 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
230 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
231 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
232 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
233 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
234 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
235 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
236 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
237 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
238 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
239 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
240 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
241 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
242 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
265 |
+
}
|
266 |
+
}
|
modeling_gigarembed.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
from functools import partial
|
7 |
+
from contextlib import nullcontext
|
8 |
+
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
|
9 |
+
from transformers.modeling_utils import PreTrainedModel
|
10 |
+
from transformers.models.auto import AutoTokenizer
|
11 |
+
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
13 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
14 |
+
from transformers import LlamaModel, LlamaConfig
|
15 |
+
from transformers.cache_utils import Cache, DynamicCache
|
16 |
+
from transformers.utils import (
|
17 |
+
add_start_docstrings_to_model_forward,
|
18 |
+
logging,
|
19 |
+
)
|
20 |
+
from einops import rearrange, repeat
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
from datasets import Dataset
|
23 |
+
from torch.utils.data import DataLoader
|
24 |
+
from .configuration_gigarembed import GigarEmbedConfig, LatentAttentionConfig, BidirectionalLlamaConfig
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
class GigarEmbedFeatures(TypedDict):
|
29 |
+
input_dict: torch.Tensor
|
30 |
+
attention_mask: torch.Tensor
|
31 |
+
pool_mask: torch.Tensor
|
32 |
+
|
33 |
+
class BidirectionalLlamaModel(LlamaModel):
|
34 |
+
config_class = BidirectionalLlamaConfig
|
35 |
+
|
36 |
+
def __init__(self, config: LlamaConfig):
|
37 |
+
super().__init__(config)
|
38 |
+
for layer in self.layers:
|
39 |
+
layer.self_attn.is_causal = False
|
40 |
+
self._attn_implementation = "eager"
|
41 |
+
|
42 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
43 |
+
def forward(
|
44 |
+
self,
|
45 |
+
input_ids: torch.LongTensor = None,
|
46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
47 |
+
position_ids: Optional[torch.LongTensor] = None,
|
48 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
49 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
50 |
+
use_cache: Optional[bool] = None,
|
51 |
+
output_attentions: Optional[bool] = None,
|
52 |
+
output_hidden_states: Optional[bool] = None,
|
53 |
+
return_dict: Optional[bool] = None,
|
54 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
55 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
56 |
+
output_hidden_states = (
|
57 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
58 |
+
)
|
59 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
60 |
+
|
61 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
62 |
+
|
63 |
+
# retrieve input_ids and inputs_embeds
|
64 |
+
if input_ids is not None and inputs_embeds is not None:
|
65 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
66 |
+
elif input_ids is not None:
|
67 |
+
batch_size, seq_length = input_ids.shape
|
68 |
+
elif inputs_embeds is not None:
|
69 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
70 |
+
else:
|
71 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
72 |
+
|
73 |
+
if self.gradient_checkpointing and self.training:
|
74 |
+
if use_cache:
|
75 |
+
logger.warning_once(
|
76 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
77 |
+
)
|
78 |
+
use_cache = False
|
79 |
+
|
80 |
+
past_key_values_length = 0
|
81 |
+
|
82 |
+
if use_cache:
|
83 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
84 |
+
if use_legacy_cache:
|
85 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
86 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
87 |
+
|
88 |
+
if position_ids is None:
|
89 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
90 |
+
position_ids = torch.arange(
|
91 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
92 |
+
)
|
93 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
94 |
+
else:
|
95 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
96 |
+
|
97 |
+
if inputs_embeds is None:
|
98 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
99 |
+
|
100 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
101 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
102 |
+
if is_padding_right:
|
103 |
+
raise ValueError(
|
104 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
105 |
+
" this may lead to unexpected behaviour for Flash Attention version of Llama. Make sure to "
|
106 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
107 |
+
)
|
108 |
+
|
109 |
+
if self._attn_implementation == "flash_attention_2":
|
110 |
+
# 2d mask is passed through the layers
|
111 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
112 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
113 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
114 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
115 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
116 |
+
attention_mask, inputs_embeds.dtype
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
# 4d mask is passed through the layers
|
120 |
+
attention_mask = _prepare_4d_attention_mask(
|
121 |
+
attention_mask, inputs_embeds.dtype,
|
122 |
+
)
|
123 |
+
|
124 |
+
hidden_states = inputs_embeds
|
125 |
+
|
126 |
+
# create position embeddings to be shared across the decoder layers
|
127 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
128 |
+
|
129 |
+
# decoder layers
|
130 |
+
all_hidden_states = () if output_hidden_states else None
|
131 |
+
all_self_attns = () if output_attentions else None
|
132 |
+
next_decoder_cache = None
|
133 |
+
|
134 |
+
for decoder_layer in self.layers:
|
135 |
+
if output_hidden_states:
|
136 |
+
all_hidden_states += (hidden_states,)
|
137 |
+
|
138 |
+
if self.gradient_checkpointing and self.training:
|
139 |
+
layer_outputs = self._gradient_checkpointing_func(
|
140 |
+
decoder_layer.__call__,
|
141 |
+
hidden_states,
|
142 |
+
attention_mask,
|
143 |
+
position_ids,
|
144 |
+
past_key_values,
|
145 |
+
output_attentions,
|
146 |
+
use_cache,
|
147 |
+
position_embeddings=position_embeddings
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
layer_outputs = decoder_layer(
|
151 |
+
hidden_states,
|
152 |
+
attention_mask=attention_mask,
|
153 |
+
position_ids=position_ids,
|
154 |
+
past_key_value=past_key_values,
|
155 |
+
output_attentions=output_attentions,
|
156 |
+
use_cache=use_cache,
|
157 |
+
position_embeddings=position_embeddings
|
158 |
+
)
|
159 |
+
|
160 |
+
hidden_states = layer_outputs[0]
|
161 |
+
|
162 |
+
if use_cache:
|
163 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
164 |
+
|
165 |
+
if output_attentions:
|
166 |
+
all_self_attns += (layer_outputs[1],)
|
167 |
+
|
168 |
+
hidden_states = self.norm(hidden_states)
|
169 |
+
|
170 |
+
# add hidden states from the last decoder layer
|
171 |
+
if output_hidden_states:
|
172 |
+
all_hidden_states += (hidden_states,)
|
173 |
+
|
174 |
+
next_cache = None
|
175 |
+
if use_cache:
|
176 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
177 |
+
|
178 |
+
if not return_dict:
|
179 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
180 |
+
return BaseModelOutputWithPast(
|
181 |
+
last_hidden_state=hidden_states,
|
182 |
+
past_key_values=next_cache,
|
183 |
+
hidden_states=all_hidden_states,
|
184 |
+
attentions=all_self_attns,
|
185 |
+
)
|
186 |
+
|
187 |
+
def _move_to_device(maybe_tensor, device: torch.device):
|
188 |
+
if torch.is_tensor(maybe_tensor):
|
189 |
+
return maybe_tensor.to(device, non_blocking=device.type == "cuda")
|
190 |
+
elif isinstance(maybe_tensor, dict):
|
191 |
+
return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
|
192 |
+
elif isinstance(maybe_tensor, list):
|
193 |
+
return [_move_to_device(x, device) for x in maybe_tensor]
|
194 |
+
elif isinstance(maybe_tensor, tuple):
|
195 |
+
return tuple([_move_to_device(x, device) for x in maybe_tensor])
|
196 |
+
elif isinstance(maybe_tensor, Mapping):
|
197 |
+
return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
|
198 |
+
else:
|
199 |
+
return maybe_tensor
|
200 |
+
|
201 |
+
def move_to_device(sample, device: torch.device):
|
202 |
+
if device.type == "cpu":
|
203 |
+
return sample
|
204 |
+
|
205 |
+
if len(sample) == 0:
|
206 |
+
return {}
|
207 |
+
return _move_to_device(sample, device)
|
208 |
+
|
209 |
+
|
210 |
+
def input_transform_func(
|
211 |
+
tokenizer: PreTrainedTokenizerFast,
|
212 |
+
examples: Dict[str, List],
|
213 |
+
max_length: int,
|
214 |
+
instruction: str,
|
215 |
+
) -> BatchEncoding:
|
216 |
+
examples['input_texts'] = [instruction + input_example for input_example in examples['input_texts']]
|
217 |
+
batch_dict = tokenizer(
|
218 |
+
examples['input_texts'],
|
219 |
+
max_length=max_length,
|
220 |
+
padding=True,
|
221 |
+
return_token_type_ids=False,
|
222 |
+
return_tensors="pt",
|
223 |
+
truncation=True)
|
224 |
+
return batch_dict
|
225 |
+
|
226 |
+
|
227 |
+
class PreNorm(torch.nn.Module):
|
228 |
+
def __init__(self, dim, fn, context_dim = None):
|
229 |
+
super().__init__()
|
230 |
+
# TODO remove this layer, we don't use it
|
231 |
+
|
232 |
+
def forward(self, x, **kwargs):
|
233 |
+
return x
|
234 |
+
|
235 |
+
class GEGLU(torch.nn.Module):
|
236 |
+
def forward(self, x):
|
237 |
+
x, gates = x.chunk(2, dim = -1)
|
238 |
+
return x * torch.nn.functional.gelu(gates)
|
239 |
+
|
240 |
+
class FeedForward(torch.nn.Module):
|
241 |
+
def __init__(self, dim, mult = 4):
|
242 |
+
super().__init__()
|
243 |
+
self.net = torch.nn.Sequential(
|
244 |
+
torch.nn.Linear(dim, 2 * dim * mult),
|
245 |
+
GEGLU(),
|
246 |
+
torch.nn.Linear(dim * mult, dim)
|
247 |
+
)
|
248 |
+
|
249 |
+
def forward(self, x):
|
250 |
+
return self.net(x)
|
251 |
+
|
252 |
+
def exists(val):
|
253 |
+
return val is not None
|
254 |
+
|
255 |
+
def default(val, d):
|
256 |
+
return val if exists(val) else d
|
257 |
+
|
258 |
+
|
259 |
+
class Attention(torch.nn.Module):
|
260 |
+
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
|
261 |
+
super().__init__()
|
262 |
+
inner_dim = dim_head * heads
|
263 |
+
context_dim = default(context_dim, query_dim)
|
264 |
+
self.scale = dim_head ** -0.5
|
265 |
+
self.heads = heads
|
266 |
+
|
267 |
+
self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
|
268 |
+
self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
|
269 |
+
self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)
|
270 |
+
|
271 |
+
def forward(self, x, context = None, mask = None):
|
272 |
+
h = self.heads
|
273 |
+
q = self.to_q(x)
|
274 |
+
context = default(context, x)
|
275 |
+
k, v = self.to_kv(context).chunk(2, dim = -1)
|
276 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
|
277 |
+
|
278 |
+
attn_weights = torch.matmul(q, k.transpose(-1, -2)) / self.scale
|
279 |
+
|
280 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
281 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
282 |
+
|
283 |
+
padding_mask = mask[:, :, None].repeat(self.heads, 1, 1).bool()
|
284 |
+
|
285 |
+
attn_weights = torch.where(padding_mask, attn_weights, mask_value)
|
286 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
287 |
+
|
288 |
+
out = torch.matmul(attn_weights, v)
|
289 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
|
290 |
+
return self.to_out(out)
|
291 |
+
|
292 |
+
|
293 |
+
class LatentAttentionModel(PreTrainedModel):
|
294 |
+
config_class = LatentAttentionConfig
|
295 |
+
|
296 |
+
def __init__(self, config: LatentAttentionConfig):
|
297 |
+
super().__init__(config)
|
298 |
+
## cross-attention block
|
299 |
+
num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
|
300 |
+
dim = config.hidden_dim
|
301 |
+
# init latent_attention and latents
|
302 |
+
self.cross_attend_blocks = torch.nn.ModuleList([
|
303 |
+
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
|
304 |
+
context_dim = dim),
|
305 |
+
PreNorm(latent_dim, FeedForward(latent_dim)),
|
306 |
+
])
|
307 |
+
self.output_normalize = config.output_normalize
|
308 |
+
self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))
|
309 |
+
|
310 |
+
def forward(self, hiddens, attention_mask: torch.Tensor=None):
|
311 |
+
# cross-attention block
|
312 |
+
cross_attn, cross_ff = self.cross_attend_blocks
|
313 |
+
b, *_, device = *hiddens.shape, hiddens.device
|
314 |
+
x = repeat(self.latents, 'n d -> b n d', b = b)
|
315 |
+
hiddens = cross_attn(hiddens, context=x, mask=attention_mask) + hiddens
|
316 |
+
hiddens = cross_ff(hiddens) + hiddens
|
317 |
+
if attention_mask != None:
|
318 |
+
s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1)
|
319 |
+
d = attention_mask.sum(dim=1, keepdim=True).float()
|
320 |
+
hiddens = s / d
|
321 |
+
if self.output_normalize:
|
322 |
+
hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1)
|
323 |
+
return hiddens
|
324 |
+
|
325 |
+
class GigarEmbedModel(PreTrainedModel):
|
326 |
+
config_class = GigarEmbedConfig
|
327 |
+
_no_split_modules = ["LlamaDecoderLayer", "LatentAttentionModel"]
|
328 |
+
|
329 |
+
def __init__(self, config: GigarEmbedConfig):
|
330 |
+
super().__init__(config)
|
331 |
+
self.latent_attention_model = AutoModel.from_config(config.latent_attention_config).float()
|
332 |
+
self.model = AutoModel.from_config(
|
333 |
+
config.text_config,
|
334 |
+
) if config.text_config is not None else None
|
335 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
|
336 |
+
self.padding_side = config.padding_side
|
337 |
+
self.is_mask_instruction = config.is_mask_instruction
|
338 |
+
self.add_eos = config.add_eos
|
339 |
+
self.mask_type = config.mask_type
|
340 |
+
if config.add_pad_token and self.tokenizer is not None:
|
341 |
+
self.add_pad_token()
|
342 |
+
|
343 |
+
self.latent_attention_model.apply(self._init_weights)
|
344 |
+
|
345 |
+
def _init_weights(self, module):
|
346 |
+
if isinstance(module, torch.nn.Linear):
|
347 |
+
torch.nn.init.xavier_normal_(module.weight)
|
348 |
+
|
349 |
+
def add_pad_token(self):
|
350 |
+
self.tokenizer.pad_token_id = 0
|
351 |
+
self.tokenizer.padding_side = self.padding_side
|
352 |
+
|
353 |
+
def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
|
354 |
+
batch_dict = move_to_device(batch_dict, device)
|
355 |
+
attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
|
356 |
+
if (attention_mask is not None and
|
357 |
+
self.padding_side == "right" and
|
358 |
+
self.is_mask_instruction == True and
|
359 |
+
instruction_lens > 0):
|
360 |
+
# Mask out the instruction tokens for mean-pooling
|
361 |
+
attention_mask[:, :instruction_lens] = 0
|
362 |
+
features: GigarEmbedFeatures = {
|
363 |
+
'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()),
|
364 |
+
'attention_mask': batch_dict['attention_mask'],
|
365 |
+
'pool_mask': attention_mask,
|
366 |
+
}
|
367 |
+
return features
|
368 |
+
|
369 |
+
@torch.no_grad()
|
370 |
+
def _do_encode(self,
|
371 |
+
prompts: List[str],
|
372 |
+
batch_size: int=1,
|
373 |
+
instruction: str="",
|
374 |
+
max_length: int=4096,
|
375 |
+
num_workers: int=32,
|
376 |
+
**kwargs
|
377 |
+
) -> Union[np.ndarray, torch.FloatTensor]:
|
378 |
+
dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
|
379 |
+
dataset.set_transform(partial(input_transform_func,
|
380 |
+
self.tokenizer,
|
381 |
+
max_length=max_length,
|
382 |
+
instruction=instruction))
|
383 |
+
|
384 |
+
data_collator = DataCollatorWithPadding(self.tokenizer)
|
385 |
+
data_loader = DataLoader(
|
386 |
+
dataset,
|
387 |
+
batch_size=batch_size,
|
388 |
+
shuffle=False,
|
389 |
+
drop_last=False,
|
390 |
+
num_workers=num_workers,
|
391 |
+
collate_fn=data_collator,
|
392 |
+
pin_memory=True)
|
393 |
+
|
394 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
395 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
396 |
+
else:
|
397 |
+
instruction_lens = 0
|
398 |
+
|
399 |
+
encoded_embeds = []
|
400 |
+
device = next(self.model.parameters()).device
|
401 |
+
for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
|
402 |
+
features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
403 |
+
embeds=self(**features)["sentence_embeddings"].squeeze(1)
|
404 |
+
encoded_embeds.append(embeds)
|
405 |
+
encoded_embeds = torch.cat(encoded_embeds, axis=0)
|
406 |
+
if "return_numpy" in kwargs and kwargs.get("return_numpy"):
|
407 |
+
encoded_embeds = encoded_embeds.cpu().detach().numpy()
|
408 |
+
return encoded_embeds
|
409 |
+
|
410 |
+
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None,
|
411 |
+
return_dict: bool=True, **kwargs):
|
412 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
|
413 |
+
|
414 |
+
embeds = self.latent_attention_model(
|
415 |
+
outputs.last_hidden_state,
|
416 |
+
attention_mask,
|
417 |
+
)
|
418 |
+
if not return_dict:
|
419 |
+
return (embeds,)
|
420 |
+
return {"sentence_embeddings": embeds}
|
421 |
+
|
422 |
+
|
423 |
+
@torch.no_grad()
|
424 |
+
def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
|
425 |
+
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
|
426 |
+
instruction_lens = len(self.tokenizer.tokenize(instruction))
|
427 |
+
else:
|
428 |
+
instruction_lens = 0
|
429 |
+
|
430 |
+
device = next(self.model.parameters()).device
|
431 |
+
batch_dict = input_transform_func(self.tokenizer,
|
432 |
+
{"input_texts": [prompt for prompt in prompts]},
|
433 |
+
max_length=max_length,
|
434 |
+
instruction=instruction)
|
435 |
+
|
436 |
+
features: GigarEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
|
437 |
+
return self(**features)["sentence_embeddings"].squeeze(1)
|
438 |
+
|
439 |
+
|
440 |
+
## AutoModel Register
|
441 |
+
AutoModel.register(GigarEmbedConfig, GigarEmbedModel)
|
442 |
+
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
|
443 |
+
AutoModel.register(BidirectionalLlamaConfig, BidirectionalLlamaModel)
|
444 |
+
|
445 |
+
## Register for auto class
|
446 |
+
GigarEmbedModel.register_for_auto_class("AutoModel")
|
447 |
+
LatentAttentionModel.register_for_auto_class("AutoModel")
|
448 |
+
BidirectionalLlamaModel.register_for_auto_class("AutoModel")
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"unk_token": "<unk>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2082 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128000": {
|
28 |
+
"content": "<|gigatoken_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128001": {
|
36 |
+
"content": "<|gigatoken_2|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128002": {
|
44 |
+
"content": "<|gigatoken_3|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128003": {
|
52 |
+
"content": "<|gigatoken_4|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128004": {
|
60 |
+
"content": "<|gigatoken_5|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128005": {
|
68 |
+
"content": "<|gigatoken_6|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128006": {
|
76 |
+
"content": "<|gigatoken_7|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128007": {
|
84 |
+
"content": "<|gigatoken_8|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128008": {
|
92 |
+
"content": "<|gigatoken_9|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128009": {
|
100 |
+
"content": "<|gigatoken_10|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128010": {
|
108 |
+
"content": "<|gigatoken_11|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128011": {
|
116 |
+
"content": "<|gigatoken_12|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128012": {
|
124 |
+
"content": "<|gigatoken_13|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128013": {
|
132 |
+
"content": "<|gigatoken_14|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128014": {
|
140 |
+
"content": "<|gigatoken_15|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128015": {
|
148 |
+
"content": "<|gigatoken_16|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128016": {
|
156 |
+
"content": "<|gigatoken_17|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128017": {
|
164 |
+
"content": "<|gigatoken_18|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128018": {
|
172 |
+
"content": "<|gigatoken_19|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128019": {
|
180 |
+
"content": "<|gigatoken_20|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128020": {
|
188 |
+
"content": "<|gigatoken_21|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128021": {
|
196 |
+
"content": "<|gigatoken_22|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128022": {
|
204 |
+
"content": "<|gigatoken_23|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128023": {
|
212 |
+
"content": "<|gigatoken_24|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128024": {
|
220 |
+
"content": "<|gigatoken_25|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128025": {
|
228 |
+
"content": "<|gigatoken_26|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128026": {
|
236 |
+
"content": "<|gigatoken_27|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128027": {
|
244 |
+
"content": "<|gigatoken_28|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128028": {
|
252 |
+
"content": "<|gigatoken_29|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128029": {
|
260 |
+
"content": "<|gigatoken_30|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128030": {
|
268 |
+
"content": "<|gigatoken_31|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128031": {
|
276 |
+
"content": "<|gigatoken_32|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128032": {
|
284 |
+
"content": "<|gigatoken_33|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128033": {
|
292 |
+
"content": "<|gigatoken_34|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128034": {
|
300 |
+
"content": "<|gigatoken_35|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128035": {
|
308 |
+
"content": "<|gigatoken_36|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128036": {
|
316 |
+
"content": "<|gigatoken_37|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128037": {
|
324 |
+
"content": "<|gigatoken_38|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128038": {
|
332 |
+
"content": "<|gigatoken_39|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128039": {
|
340 |
+
"content": "<|gigatoken_40|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128040": {
|
348 |
+
"content": "<|gigatoken_41|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128041": {
|
356 |
+
"content": "<|gigatoken_42|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128042": {
|
364 |
+
"content": "<|gigatoken_43|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128043": {
|
372 |
+
"content": "<|gigatoken_44|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128044": {
|
380 |
+
"content": "<|gigatoken_45|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128045": {
|
388 |
+
"content": "<|gigatoken_46|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128046": {
|
396 |
+
"content": "<|gigatoken_47|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128047": {
|
404 |
+
"content": "<|gigatoken_48|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128048": {
|
412 |
+
"content": "<|gigatoken_49|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128049": {
|
420 |
+
"content": "<|gigatoken_50|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128050": {
|
428 |
+
"content": "<|gigatoken_51|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128051": {
|
436 |
+
"content": "<|gigatoken_52|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128052": {
|
444 |
+
"content": "<|gigatoken_53|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128053": {
|
452 |
+
"content": "<|gigatoken_54|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128054": {
|
460 |
+
"content": "<|gigatoken_55|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128055": {
|
468 |
+
"content": "<|gigatoken_56|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128056": {
|
476 |
+
"content": "<|gigatoken_57|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128057": {
|
484 |
+
"content": "<|gigatoken_58|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128058": {
|
492 |
+
"content": "<|gigatoken_59|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128059": {
|
500 |
+
"content": "<|gigatoken_60|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128060": {
|
508 |
+
"content": "<|gigatoken_61|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128061": {
|
516 |
+
"content": "<|gigatoken_62|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128062": {
|
524 |
+
"content": "<|gigatoken_63|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128063": {
|
532 |
+
"content": "<|gigatoken_64|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128064": {
|
540 |
+
"content": "<|gigatoken_65|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128065": {
|
548 |
+
"content": "<|gigatoken_66|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128066": {
|
556 |
+
"content": "<|gigatoken_67|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128067": {
|
564 |
+
"content": "<|gigatoken_68|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128068": {
|
572 |
+
"content": "<|gigatoken_69|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128069": {
|
580 |
+
"content": "<|gigatoken_70|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128070": {
|
588 |
+
"content": "<|gigatoken_71|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128071": {
|
596 |
+
"content": "<|gigatoken_72|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128072": {
|
604 |
+
"content": "<|gigatoken_73|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128073": {
|
612 |
+
"content": "<|gigatoken_74|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128074": {
|
620 |
+
"content": "<|gigatoken_75|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128075": {
|
628 |
+
"content": "<|gigatoken_76|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128076": {
|
636 |
+
"content": "<|gigatoken_77|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128077": {
|
644 |
+
"content": "<|gigatoken_78|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128078": {
|
652 |
+
"content": "<|gigatoken_79|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128079": {
|
660 |
+
"content": "<|gigatoken_80|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128080": {
|
668 |
+
"content": "<|gigatoken_81|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128081": {
|
676 |
+
"content": "<|gigatoken_82|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128082": {
|
684 |
+
"content": "<|gigatoken_83|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128083": {
|
692 |
+
"content": "<|gigatoken_84|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128084": {
|
700 |
+
"content": "<|gigatoken_85|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128085": {
|
708 |
+
"content": "<|gigatoken_86|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128086": {
|
716 |
+
"content": "<|gigatoken_87|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128087": {
|
724 |
+
"content": "<|gigatoken_88|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128088": {
|
732 |
+
"content": "<|gigatoken_89|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128089": {
|
740 |
+
"content": "<|gigatoken_90|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128090": {
|
748 |
+
"content": "<|gigatoken_91|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128091": {
|
756 |
+
"content": "<|gigatoken_92|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128092": {
|
764 |
+
"content": "<|gigatoken_93|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128093": {
|
772 |
+
"content": "<|gigatoken_94|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128094": {
|
780 |
+
"content": "<|gigatoken_95|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128095": {
|
788 |
+
"content": "<|gigatoken_96|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128096": {
|
796 |
+
"content": "<|gigatoken_97|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128097": {
|
804 |
+
"content": "<|gigatoken_98|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128098": {
|
812 |
+
"content": "<|gigatoken_99|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128099": {
|
820 |
+
"content": "<|gigatoken_100|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128100": {
|
828 |
+
"content": "<|gigatoken_101|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128101": {
|
836 |
+
"content": "<|gigatoken_102|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128102": {
|
844 |
+
"content": "<|gigatoken_103|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128103": {
|
852 |
+
"content": "<|gigatoken_104|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128104": {
|
860 |
+
"content": "<|gigatoken_105|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128105": {
|
868 |
+
"content": "<|gigatoken_106|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128106": {
|
876 |
+
"content": "<|gigatoken_107|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128107": {
|
884 |
+
"content": "<|gigatoken_108|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128108": {
|
892 |
+
"content": "<|gigatoken_109|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128109": {
|
900 |
+
"content": "<|gigatoken_110|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128110": {
|
908 |
+
"content": "<|gigatoken_111|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128111": {
|
916 |
+
"content": "<|gigatoken_112|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128112": {
|
924 |
+
"content": "<|gigatoken_113|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128113": {
|
932 |
+
"content": "<|gigatoken_114|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128114": {
|
940 |
+
"content": "<|gigatoken_115|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128115": {
|
948 |
+
"content": "<|gigatoken_116|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128116": {
|
956 |
+
"content": "<|gigatoken_117|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128117": {
|
964 |
+
"content": "<|gigatoken_118|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128118": {
|
972 |
+
"content": "<|gigatoken_119|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128119": {
|
980 |
+
"content": "<|gigatoken_120|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128120": {
|
988 |
+
"content": "<|gigatoken_121|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128121": {
|
996 |
+
"content": "<|gigatoken_122|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128122": {
|
1004 |
+
"content": "<|gigatoken_123|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128123": {
|
1012 |
+
"content": "<|gigatoken_124|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128124": {
|
1020 |
+
"content": "<|gigatoken_125|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128125": {
|
1028 |
+
"content": "<|gigatoken_126|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128126": {
|
1036 |
+
"content": "<|gigatoken_127|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128127": {
|
1044 |
+
"content": "<|gigatoken_128|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128128": {
|
1052 |
+
"content": "<|gigatoken_129|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128129": {
|
1060 |
+
"content": "<|gigatoken_130|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128130": {
|
1068 |
+
"content": "<|gigatoken_131|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128131": {
|
1076 |
+
"content": "<|gigatoken_132|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128132": {
|
1084 |
+
"content": "<|gigatoken_133|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128133": {
|
1092 |
+
"content": "<|gigatoken_134|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128134": {
|
1100 |
+
"content": "<|gigatoken_135|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128135": {
|
1108 |
+
"content": "<|gigatoken_136|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128136": {
|
1116 |
+
"content": "<|gigatoken_137|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128137": {
|
1124 |
+
"content": "<|gigatoken_138|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128138": {
|
1132 |
+
"content": "<|gigatoken_139|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128139": {
|
1140 |
+
"content": "<|gigatoken_140|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128140": {
|
1148 |
+
"content": "<|gigatoken_141|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128141": {
|
1156 |
+
"content": "<|gigatoken_142|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128142": {
|
1164 |
+
"content": "<|gigatoken_143|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128143": {
|
1172 |
+
"content": "<|gigatoken_144|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128144": {
|
1180 |
+
"content": "<|gigatoken_145|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128145": {
|
1188 |
+
"content": "<|gigatoken_146|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128146": {
|
1196 |
+
"content": "<|gigatoken_147|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128147": {
|
1204 |
+
"content": "<|gigatoken_148|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128148": {
|
1212 |
+
"content": "<|gigatoken_149|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128149": {
|
1220 |
+
"content": "<|gigatoken_150|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128150": {
|
1228 |
+
"content": "<|gigatoken_151|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128151": {
|
1236 |
+
"content": "<|gigatoken_152|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128152": {
|
1244 |
+
"content": "<|gigatoken_153|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128153": {
|
1252 |
+
"content": "<|gigatoken_154|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128154": {
|
1260 |
+
"content": "<|gigatoken_155|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128155": {
|
1268 |
+
"content": "<|gigatoken_156|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128156": {
|
1276 |
+
"content": "<|gigatoken_157|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128157": {
|
1284 |
+
"content": "<|gigatoken_158|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128158": {
|
1292 |
+
"content": "<|gigatoken_159|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128159": {
|
1300 |
+
"content": "<|gigatoken_160|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128160": {
|
1308 |
+
"content": "<|gigatoken_161|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128161": {
|
1316 |
+
"content": "<|gigatoken_162|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128162": {
|
1324 |
+
"content": "<|gigatoken_163|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128163": {
|
1332 |
+
"content": "<|gigatoken_164|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128164": {
|
1340 |
+
"content": "<|gigatoken_165|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128165": {
|
1348 |
+
"content": "<|gigatoken_166|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128166": {
|
1356 |
+
"content": "<|gigatoken_167|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128167": {
|
1364 |
+
"content": "<|gigatoken_168|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128168": {
|
1372 |
+
"content": "<|gigatoken_169|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128169": {
|
1380 |
+
"content": "<|gigatoken_170|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128170": {
|
1388 |
+
"content": "<|gigatoken_171|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128171": {
|
1396 |
+
"content": "<|gigatoken_172|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128172": {
|
1404 |
+
"content": "<|gigatoken_173|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128173": {
|
1412 |
+
"content": "<|gigatoken_174|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128174": {
|
1420 |
+
"content": "<|gigatoken_175|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128175": {
|
1428 |
+
"content": "<|gigatoken_176|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128176": {
|
1436 |
+
"content": "<|gigatoken_177|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128177": {
|
1444 |
+
"content": "<|gigatoken_178|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128178": {
|
1452 |
+
"content": "<|gigatoken_179|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128179": {
|
1460 |
+
"content": "<|gigatoken_180|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128180": {
|
1468 |
+
"content": "<|gigatoken_181|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128181": {
|
1476 |
+
"content": "<|gigatoken_182|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128182": {
|
1484 |
+
"content": "<|gigatoken_183|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128183": {
|
1492 |
+
"content": "<|gigatoken_184|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128184": {
|
1500 |
+
"content": "<|gigatoken_185|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128185": {
|
1508 |
+
"content": "<|gigatoken_186|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128186": {
|
1516 |
+
"content": "<|gigatoken_187|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128187": {
|
1524 |
+
"content": "<|gigatoken_188|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128188": {
|
1532 |
+
"content": "<|gigatoken_189|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128189": {
|
1540 |
+
"content": "<|gigatoken_190|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128190": {
|
1548 |
+
"content": "<|gigatoken_191|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128191": {
|
1556 |
+
"content": "<|gigatoken_192|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128192": {
|
1564 |
+
"content": "<|gigatoken_193|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128193": {
|
1572 |
+
"content": "<|gigatoken_194|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128194": {
|
1580 |
+
"content": "<|gigatoken_195|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128195": {
|
1588 |
+
"content": "<|gigatoken_196|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128196": {
|
1596 |
+
"content": "<|gigatoken_197|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128197": {
|
1604 |
+
"content": "<|gigatoken_198|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128198": {
|
1612 |
+
"content": "<|gigatoken_199|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128199": {
|
1620 |
+
"content": "<|gigatoken_200|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128200": {
|
1628 |
+
"content": "<|gigatoken_201|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128201": {
|
1636 |
+
"content": "<|gigatoken_202|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128202": {
|
1644 |
+
"content": "<|gigatoken_203|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128203": {
|
1652 |
+
"content": "<|gigatoken_204|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128204": {
|
1660 |
+
"content": "<|gigatoken_205|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128205": {
|
1668 |
+
"content": "<|gigatoken_206|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128206": {
|
1676 |
+
"content": "<|gigatoken_207|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128207": {
|
1684 |
+
"content": "<|gigatoken_208|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128208": {
|
1692 |
+
"content": "<|gigatoken_209|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128209": {
|
1700 |
+
"content": "<|gigatoken_210|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128210": {
|
1708 |
+
"content": "<|gigatoken_211|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128211": {
|
1716 |
+
"content": "<|gigatoken_212|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128212": {
|
1724 |
+
"content": "<|gigatoken_213|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128213": {
|
1732 |
+
"content": "<|gigatoken_214|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128214": {
|
1740 |
+
"content": "<|gigatoken_215|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128215": {
|
1748 |
+
"content": "<|gigatoken_216|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128216": {
|
1756 |
+
"content": "<|gigatoken_217|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128217": {
|
1764 |
+
"content": "<|gigatoken_218|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128218": {
|
1772 |
+
"content": "<|gigatoken_219|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128219": {
|
1780 |
+
"content": "<|gigatoken_220|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128220": {
|
1788 |
+
"content": "<|gigatoken_221|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128221": {
|
1796 |
+
"content": "<|gigatoken_222|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128222": {
|
1804 |
+
"content": "<|gigatoken_223|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128223": {
|
1812 |
+
"content": "<|gigatoken_224|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128224": {
|
1820 |
+
"content": "<|gigatoken_225|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128225": {
|
1828 |
+
"content": "<|gigatoken_226|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128226": {
|
1836 |
+
"content": "<|gigatoken_227|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128227": {
|
1844 |
+
"content": "<|gigatoken_228|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128228": {
|
1852 |
+
"content": "<|gigatoken_229|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128229": {
|
1860 |
+
"content": "<|gigatoken_230|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128230": {
|
1868 |
+
"content": "<|gigatoken_231|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128231": {
|
1876 |
+
"content": "<|gigatoken_232|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128232": {
|
1884 |
+
"content": "<|gigatoken_233|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128233": {
|
1892 |
+
"content": "<|gigatoken_234|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128234": {
|
1900 |
+
"content": "<|gigatoken_235|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128235": {
|
1908 |
+
"content": "<|gigatoken_236|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128236": {
|
1916 |
+
"content": "<|gigatoken_237|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128237": {
|
1924 |
+
"content": "<|gigatoken_238|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128238": {
|
1932 |
+
"content": "<|gigatoken_239|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128239": {
|
1940 |
+
"content": "<|gigatoken_240|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128240": {
|
1948 |
+
"content": "<|gigatoken_241|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128241": {
|
1956 |
+
"content": "<|gigatoken_242|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128242": {
|
1964 |
+
"content": "<|gigatoken_243|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128243": {
|
1972 |
+
"content": "<|gigatoken_244|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128244": {
|
1980 |
+
"content": "<|gigatoken_245|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128245": {
|
1988 |
+
"content": "<|gigatoken_246|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128246": {
|
1996 |
+
"content": "<|gigatoken_247|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128247": {
|
2004 |
+
"content": "<|gigatoken_248|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128248": {
|
2012 |
+
"content": "<|gigatoken_249|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128249": {
|
2020 |
+
"content": "<|gigatoken_250|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128250": {
|
2028 |
+
"content": "<|gigatoken_251|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128251": {
|
2036 |
+
"content": "<|gigatoken_252|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128252": {
|
2044 |
+
"content": "<|gigatoken_253|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128253": {
|
2052 |
+
"content": "<|gigatoken_254|>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
},
|
2059 |
+
"128254": {
|
2060 |
+
"content": "<|gigatoken_255|>",
|
2061 |
+
"lstrip": false,
|
2062 |
+
"normalized": false,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": true
|
2066 |
+
},
|
2067 |
+
"128255": {
|
2068 |
+
"content": "<|gigatoken_256|>",
|
2069 |
+
"lstrip": false,
|
2070 |
+
"normalized": false,
|
2071 |
+
"rstrip": false,
|
2072 |
+
"single_word": false,
|
2073 |
+
"special": true
|
2074 |
+
}
|
2075 |
+
},
|
2076 |
+
"bos_token": "<s>",
|
2077 |
+
"clean_up_tokenization_spaces": true,
|
2078 |
+
"eos_token": "</s>",
|
2079 |
+
"model_max_length": 1000000000000000019884624838656,
|
2080 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
2081 |
+
"unk_token": "<unk>"
|
2082 |
+
}
|