ESGify / configuration_ESGify.py
LizaKovtun's picture
Upload 2 files
a58b94a
raw
history blame
7.2 kB
from transformers import PretrainedConfig
from typing import List, Dict
class ESGifyConfig(PretrainedConfig):
model_type = "mpnet"
def __init__(
self,
attention_probs_dropout_prob: float = 0.1,
bos_token_id: int = 0,
eos_token_id: int = 2,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
hidden_size: int = 768,
initializer_range: float = 0.02,
intermediate_size: int = 3072,
layer_norm_eps: float = 1e-05,
max_position_embeddings: int = 514,
num_attention_heads: int = 12,
num_hidden_layers: int = 12,
output_attentions: bool = True,
pad_token_id: int = 1,
relative_attention_num_buckets: int = 32,
vocab_size: int = 30531,
id2label: Dict = {"0": "Legal Proceedings & Law Violations",
"1": "Biodiversity",
"2": "Communities Health and Safety",
"3": "Land Acquisition and Resettlement (S)",
"4": "Emergencies (Social)",
"5": "Corporate Governance",
"6": "Responsible Investment & Greenwashing",
"7": "Not Relevant to ESG",
"8": "Economic Crime",
"9": "Emergencies (Environmental)",
"10": "Hazardous Materials Management",
"11": "Environmental Management",
"12": "Landscape Transformation",
"13": "Human Rights",
"14": "Climate Risks",
"15": "Labor Relations Management",
"16": "Freedom of Association and Right to Organise",
"17": "Employee Health and Safety",
"18": "Surface Water Pollution",
"19": "Animal Welfare",
"20": "Water Consumption",
"21": "Disclosure",
"22": "Product Safety and Quality",
"23": "Greenhouse Gas Emissions",
"24": "Indigenous People",
"25": "Cultural Heritage",
"26": "Air Pollution",
"27": "Waste Management",
"28": "Soil and Groundwater Impact",
"29": "Forced Labour",
"30": "Wastewater Management",
"31": "Natural Resources",
"32": "Physical Impacts",
"33": "Values and Ethics",
"34": "Risk Management and Internal Control",
"35": "Supply Chain (Environmental)",
"36": "Supply Chain (Social)",
"37": "Discrimination",
"38": "Minimum Age and Child Labour",
"39": "Planning Limitations",
"40": "Data Safety",
"41": "Strategy Implementation",
"42": "Energy Efficiency and Renewables",
"43": "Land Acquisition and Resettlement (E)",
"44": "Supply Chain (Economic / Governance)",
"45": "Land Rehabilitation",
"46": "Retrenchment"
},
label2id: Dict = {"Legal Proceedings & Law Violations": "0",
"Biodiversity": "1",
"Communities Health and Safety": "2",
"Land Acquisition and Resettlement (S)": "3",
"Emergencies (Social)": "4",
"Corporate Governance": "5",
"Responsible Investment & Greenwashing": "6",
"Not Relevant to ESG": "7",
"Economic Crime": "8",
"Emergencies (Environmental)": "9",
"Hazardous Materials Management": "10",
"Environmental Management": "11",
"Landscape Transformation": "12",
"Human Rights": "13",
"Climate Risks": "14",
"Labor Relations Management": "15",
"Freedom of Association and Right to Organise": "16",
"Employee Health and Safety": "17",
"Surface Water Pollution": "18",
"Animal Welfare": "19",
"Water Consumption": "20",
"Disclosure": "21",
"Product Safety and Quality": "22",
"Greenhouse Gas Emissions": "23",
"Indigenous People": "24",
"Cultural Heritage": "25",
"Air Pollution": "26",
"Waste Management": "27",
"Soil and Groundwater Impact": "28",
"Forced Labour": "29",
"Wastewater Management": "30",
"Natural Resources": "31",
"Physical Impacts": "32",
"Values and Ethics": "33",
"Risk Management and Internal Control": "34",
"Supply Chain (Environmental)": "35",
"Supply Chain (Social)": "36",
"Discrimination": "37",
"Minimum Age and Child Labour": "38",
"Planning Limitations": "39",
"Data Safety": "40",
"Strategy Implementation": "41",
"Energy Efficiency and Renewables": "42",
"Land Acquisition and Resettlement (E)": "43",
"Supply Chain (Economic / Governance)": "44",
"Land Rehabilitation": "45",
"Retrenchment": "46"},
**kwargs,
):
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.bos_token_id = bos_token_id,
self.eos_token_id = eos_token_id,
self.hidden_act = hidden_act,
self.hidden_dropout_prob = hidden_dropout_prob,
self.hidden_size = hidden_size,
self.initializer_range = initializer_range,
self.intermediate_size = intermediate_size,
self.layer_norm_eps = layer_norm_eps
self.max_position_embeddings = max_position_embeddings,
self.num_attention_heads = num_attention_heads,
self.num_hidden_layers = num_hidden_layers,
self.output_attentions = output_attentions,
self.pad_token_id = pad_token_id,
self.relative_attention_num_buckets = relative_attention_num_buckets,
self.vocab_size = vocab_size,
self.id2label = id2label,
self.label2id = label2id
super().__init__(**kwargs)