ai-forever
commited on
Commit
•
c724bd3
1
Parent(s):
90ad154
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,244 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- spellchecking
|
7 |
+
- pytorch
|
8 |
+
- natural language generation
|
9 |
license: mit
|
10 |
+
metrics:
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
library_name: transformers
|
15 |
+
model-index:
|
16 |
+
- name: sage-mt5-large
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: text-generation
|
20 |
+
dataset:
|
21 |
+
type: spellcheck_benchmark
|
22 |
+
name: RUSpellRU
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 88.4
|
27 |
+
verified: false
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 71.6
|
31 |
+
verified: false
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 79.1
|
35 |
+
verified: false
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
dataset:
|
39 |
+
type: spellcheck_benchmark
|
40 |
+
name: MultidomainGold
|
41 |
+
metrics:
|
42 |
+
- name: Precision
|
43 |
+
type: precision
|
44 |
+
value: 65.3
|
45 |
+
verified: false
|
46 |
+
- name: Recall
|
47 |
+
type: recall
|
48 |
+
value: 62.7
|
49 |
+
verified: false
|
50 |
+
- name: F1
|
51 |
+
type: f1
|
52 |
+
value: 63.9
|
53 |
+
verified: false
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
dataset:
|
57 |
+
type: spellcheck_benchmark
|
58 |
+
name: MedSpellchecker
|
59 |
+
metrics:
|
60 |
+
- name: Precision
|
61 |
+
type: precision
|
62 |
+
value: 77.7
|
63 |
+
verified: false
|
64 |
+
- name: Recall
|
65 |
+
type: recall
|
66 |
+
value: 77.5
|
67 |
+
verified: false
|
68 |
+
- name: F1
|
69 |
+
type: f1
|
70 |
+
value: 77.6
|
71 |
+
verified: false
|
72 |
+
- task:
|
73 |
+
type: text-generation
|
74 |
+
dataset:
|
75 |
+
type: spellcheck_benchmark
|
76 |
+
name: GitHubTypoCorpusRu
|
77 |
+
metrics:
|
78 |
+
- name: Precision
|
79 |
+
type: precision
|
80 |
+
value: 69.5
|
81 |
+
verified: false
|
82 |
+
- name: Recall
|
83 |
+
type: recall
|
84 |
+
value: 46.0
|
85 |
+
verified: false
|
86 |
+
- name: F1
|
87 |
+
type: f1
|
88 |
+
value: 55.3
|
89 |
+
verified: false
|
90 |
+
- task:
|
91 |
+
type: text-generation
|
92 |
+
dataset:
|
93 |
+
type: JFLEG
|
94 |
+
name: JFLEG
|
95 |
+
metrics:
|
96 |
+
- name: Precision
|
97 |
+
type: precision
|
98 |
+
value: 74.9
|
99 |
+
verified: false
|
100 |
+
- name: Recall
|
101 |
+
type: recall
|
102 |
+
value: 88.4
|
103 |
+
verified: false
|
104 |
+
- name: F1
|
105 |
+
type: f1
|
106 |
+
value: 81.1
|
107 |
+
verified: false
|
108 |
+
- task:
|
109 |
+
type: text-generation
|
110 |
+
dataset:
|
111 |
+
type: bea60k
|
112 |
+
name: BEA60K
|
113 |
+
metrics:
|
114 |
+
- name: Precision
|
115 |
+
type: precision
|
116 |
+
value: 64.7
|
117 |
+
verified: false
|
118 |
+
- name: Recall
|
119 |
+
type: recall
|
120 |
+
value: 83.8
|
121 |
+
verified: false
|
122 |
+
- name: F1
|
123 |
+
type: f1
|
124 |
+
value: 73.0
|
125 |
+
verified: false
|
126 |
---
|
127 |
+
# sage-mt5-large
|
128 |
+
|
129 |
+
![banner](images/sage_banner.jpg)
|
130 |
+
|
131 |
+
## Summary
|
132 |
+
|
133 |
+
The model corrects spelling errors and typos in both Russian and English languages by bringing all the words in the text to the norm of the language.
|
134 |
+
Corrector had been trained based on the model [FRED-T5-1.7B](https://huggingface.co/google/mt5-large) architecture.
|
135 |
+
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage).
|
136 |
+
|
137 |
+
## Public references
|
138 |
+
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
|
139 |
+
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
|
140 |
+
- [SAGE EACL 2024 paper](https://aclanthology.org/2024.findings-eacl.10/)
|
141 |
+
|
142 |
+
|
143 |
+
## Examples
|
144 |
+
| Input | Output |
|
145 |
+
| --- | --- |
|
146 |
+
| Перведи мне текст на аглиском: "Screw you kuys, I am goin hme (c). | Переведи мне текст на английском: "Screw you guys, I am going home" (c). |
|
147 |
+
| И не чсно прохожим в этот день непогожйи почему я веселый такйо | И мне ясно прохожим в этот день непогожий, почему я веселый такой |
|
148 |
+
| If you bought something goregous, you well be very happy. | If you bought something gorgeous, you will be very happy.|
|
149 |
+
| | |
|
150 |
+
|
151 |
+
## Metrics
|
152 |
+
### Quality
|
153 |
+
Below are automatic metrics for determining the correctness of the spell checkers.
|
154 |
+
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all six available datasets:
|
155 |
+
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors;
|
156 |
+
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
|
157 |
+
- **MedSpellChecker**: texts with errors from medical anamnesis;
|
158 |
+
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com);
|
159 |
+
- **BEA60K**: English spelling errors collected from several domains;
|
160 |
+
- **JFLEG**: 1601 sentences in English, which contain about 2 thousand spelling errors;
|
161 |
+
|
162 |
+
RUSpellRU, MultidomainGold, MedSpellChecker, GitHubTypoCorpusRu are datasets for the Russian spellchecking and BEA60K and JFLEG are those for the English language.
|
163 |
+
|
164 |
+
**RUSpellRU**
|
165 |
+
| Model | Precision | Recall | F1 |
|
166 |
+
| --- | --- | --- | --- |
|
167 |
+
| sage-mt5-large | 88.4 | 71.6 | 79.1 |
|
168 |
+
| sage-ai-service | 93.5 | 82.4 | 87.6 |
|
169 |
+
| gpt-3.5-turbo | 39.6 | 62.3 | 48.5 |
|
170 |
+
| gpt-4 | 69.5 | 81.0 | 74.8 |
|
171 |
+
|
172 |
+
**MultidomainGold**
|
173 |
+
| Model | Precision | Recall | F1 |
|
174 |
+
| --- | --- | --- | --- |
|
175 |
+
| sage-mt5-large | 65.3 | 62.7 | 63.9 |
|
176 |
+
| sage-ai-service | 70.9 | 68.8 | 69.9 |
|
177 |
+
| gpt-3.5-turbo | 17.8 | 56.1 | 27.0 |
|
178 |
+
| gpt-4 | 31.1 | 78.1 | 44.5 |
|
179 |
+
|
180 |
+
**MedSpellChecker**
|
181 |
+
| Model | Precision | Recall | F1 |
|
182 |
+
| --- | --- | --- | --- |
|
183 |
+
| sage-mt5-large | 77.7 | 77.5 | 77.6 |
|
184 |
+
| sage-ai-service | 73.4 | 76.2 | 74.9 |
|
185 |
+
| gpt-3.5-turbo | 15.1 | 53.6 | 23.5 |
|
186 |
+
| gpt-4 | 48.9 | 88.7 | 63.1 |
|
187 |
+
|
188 |
+
|
189 |
+
**GitHubTypoCorpusRu**
|
190 |
+
| Model | Precision | Recall | F1 |
|
191 |
+
| --- | --- | --- | --- |
|
192 |
+
| sage-mt5-large | 69.5 | 46.0 | 55.3 |
|
193 |
+
| sage-ai-service | 76.1 | 51.2 | 61.2 |
|
194 |
+
| gpt-3.5-turbo | 23.7 | 43.9 | 30.8 |
|
195 |
+
| gpt-4 | 34.7 | 60.5 | 44.1|
|
196 |
+
|
197 |
+
|
198 |
+
## How to use
|
199 |
+
```python
|
200 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
201 |
+
|
202 |
+
tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-mt5-large")
|
203 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-mt5-large")
|
204 |
+
model.to("cuda:0")
|
205 |
+
|
206 |
+
sentence = "Перведи мне текст на аглиском: \"Screw you kuys, I am goin hme (c)."
|
207 |
+
with torch.inference_mode():
|
208 |
+
encodings = tokenizer(sentence, max_length=None, padding="longest", truncation=False, return_tensors="pt")
|
209 |
+
for k, v in encodings.items():
|
210 |
+
encodings[k] = v.to("cuda:0")
|
211 |
+
res = model.generate(
|
212 |
+
**encodings,
|
213 |
+
use_cache=True,
|
214 |
+
max_length = encodings["input_ids"].size(1) * 1.5
|
215 |
+
)
|
216 |
+
res = res.cpu().tolist()
|
217 |
+
res = tokenizer.batch_decode(res, skip_special_tokens=True)
|
218 |
+
|
219 |
+
print(res)
|
220 |
+
# ["Переведи мне текст на английском: "Screw you guys, I am going home" (c)."]
|
221 |
+
```
|
222 |
+
|
223 |
+
## Limitations
|
224 |
+
- For the Russian language the model is intended to be fine-tuned for better performance.
|
225 |
+
|
226 |
+
## Resources
|
227 |
+
- [SAGE library](https://github.com/ai-forever/sage), GitHub
|
228 |
+
- [sage-fredt5-large](https://huggingface.co/ai-forever/sage-fredt5-large), HuggingFace
|
229 |
+
- [sage-fredt5-distilled-95m](https://huggingface.co/ai-forever/sage-fredt5-distilled-95m), HuggingFace
|
230 |
+
- [sage-m2m100-1.2B](https://huggingface.co/ai-forever/sage-m2m100-1.2B), HuggingFace
|
231 |
+
- [sage-mt5-large](https://huggingface.co/ai-forever/sage-mt5-large), HuggingFace
|
232 |
+
|
233 |
+
## License
|
234 |
+
Model [mT5-large](https://huggingface.co/google/mt5-large), on the basis of which our solution is made, and its source code are supplied under the Apache-2.0 license.
|
235 |
+
Our solution comes with MIT license.
|
236 |
+
|
237 |
+
## Specifications
|
238 |
+
- File size: 5 Gb;
|
239 |
+
- Framework: pytorch
|
240 |
+
- Version: v1.0
|
241 |
+
- Developer: SberDevices, AGI NLP
|
242 |
+
|
243 |
+
## Contacts
|
244 |
+
nikita.martynov.98@list.ru
|