ai-forever
commited on
Commit
•
224e5f2
1
Parent(s):
26308c3
Update README.md
Browse files
README.md
CHANGED
@@ -2,4 +2,110 @@
|
|
2 |
license: mit
|
3 |
language:
|
4 |
- ru
|
5 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
language:
|
4 |
- ru
|
5 |
+
---
|
6 |
+
|
7 |
+
# Card for ruM2M100-418M model
|
8 |
+
|
9 |
+
### Summary
|
10 |
+
The model corrects spelling errors and typos by bringing all the words in the text to the norm of the Russian language.
|
11 |
+
The proofreader was trained based on the [M2M100-418M](https://huggingface.co/facebook/m2m100_418M) model.
|
12 |
+
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the functionality of the [SAGE] library (https://github.com /orgs/ai-forever/sage).
|
13 |
+
|
14 |
+
### Articles and speeches
|
15 |
+
- [Speech about the SAGE library](https://youtu.be/yFfkV0Qjuu0), DataFest 2023
|
16 |
+
- [Article about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023
|
17 |
+
- [Article about SAGE and our best solution](https://arxiv.org/abs/2308.09435), Review EACL 2024
|
18 |
+
|
19 |
+
### Examples
|
20 |
+
| Input | Output |
|
21 |
+
| --- | --- |
|
22 |
+
| Думю ешцъа лет череа 10 ретроспективно просматривотьэ то будкетцц мне невероя тна ин те р но | Думаю, еш цъа лет через 10 ретроспективно просматривать, що буде ТЦ. Мне невероятна нтерно. |
|
23 |
+
| Основая цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий, сокращение временных показателей реагирования. | Основная цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования. |
|
24 |
+
| прийдя в МГТУ я был удивлен никого необноружив там… | прийдя в МГТУ я был удивлен никого не обнаружив там... |
|
25 |
+
|
26 |
+
## Metrics
|
27 |
+
### Quality
|
28 |
+
Below are automatic metrics for determining the correctness of the spell checkers.
|
29 |
+
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets:
|
30 |
+
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors;
|
31 |
+
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
|
32 |
+
- **MedSpellChecker**: texts with errors from medical anamnesis;
|
33 |
+
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com);
|
34 |
+
|
35 |
+
**RUSpellRU**
|
36 |
+
| Model | Precision | Recall | F1 |
|
37 |
+
| --- | --- | --- | --- |
|
38 |
+
| M2M100-418M | 57.7 | 61.2 | 59.4 |
|
39 |
+
| ChatGPT gpt-3.5-turbo-0301 | 55.8 | 75.3 | 64.1 |
|
40 |
+
| ChatGPT gpt-4-0314 | 57.0 | 75.9 | 63.9 |
|
41 |
+
| ChatGPT text-davinci-003 | 55.9 | 75.3 | 64.2 |
|
42 |
+
| Yandex.Speller | 83.0 | 59.8 | 69.5 |
|
43 |
+
| JamSpell | 42.1 | 32.8 | 36.9 |
|
44 |
+
| HunSpell | 31.3 | 34.9 | 33.0 |
|
45 |
+
|
46 |
+
**MultidomainGold**
|
47 |
+
| Model | Precision | Recall | F1 |
|
48 |
+
| --- | --- | --- | --- |
|
49 |
+
| M2M100-418M | 32.8 | 56.3 | 41.5 |
|
50 |
+
| ChatGPT gpt-3.5-turbo-0301 | 33.8 | 72.1 | 46.0 |
|
51 |
+
| ChatGPT gpt-4-0314 | 34.0 | 73.2 | 46.4 |
|
52 |
+
| ChatGPT text-davinci-003 | 33.6 | 72.0 | 45.8 |
|
53 |
+
| Yandex.Speller | 52.9 | 51.4 | 52.2 |
|
54 |
+
| JamSpell | 25.7 | 30.6 | 28.0 |
|
55 |
+
| HunSpell | 16.2 | 40.1 | 23.0 |
|
56 |
+
|
57 |
+
**MedSpellChecker**
|
58 |
+
| Модель | Precision | Recall | F1 |
|
59 |
+
| --- | --- | --- | --- |
|
60 |
+
| M2M100-418M | 23.2 | 64.5 | 34.1 |
|
61 |
+
| ChatGPT gpt-3.5-turbo-0301 | 53.2 | 67.6 | 59.6 |
|
62 |
+
| ChatGPT gpt-4-0314 | 54.2 | 69.4 | 60.9 |
|
63 |
+
| ChatGPT text-davinci-003 | 47.8 | 68.4 | 56.3 |
|
64 |
+
| Yandex.Speller | 80.6 | 47.8 | 60.0 |
|
65 |
+
| JamSpell | 24.6 | 29.7 | 26.9 |
|
66 |
+
| HunSpell | 10.3 | 40.2 | 16.4 |
|
67 |
+
|
68 |
+
**GitHubTypoCorpusRu**
|
69 |
+
| Модель | Precision | Recall | F1 |
|
70 |
+
| --- | --- | --- | --- |
|
71 |
+
| M2M100-418M | 27.5 | 42.6 | 33.4 |
|
72 |
+
| ChatGPT gpt-3.5-turbo-0301 | 43.8 | 57.0 | 49.6 |
|
73 |
+
| ChatGPT gpt-4-0314 | 45.2 | 58.2 | 51.0 |
|
74 |
+
| ChatGPT text-davinci-003 | 46.5 | 58.1 | 51.7 |
|
75 |
+
| Yandex.Speller | 67.7 | 37.5 | 48.3 |
|
76 |
+
| JamSpell | 49.5 | 29.9 | 37.3 |
|
77 |
+
| HunSpell | 28.5 | 30.7 | 29.6 |
|
78 |
+
|
79 |
+
## How to use
|
80 |
+
```python
|
81 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
82 |
+
|
83 |
+
path_to_model = "<path_to_model>"
|
84 |
+
|
85 |
+
model = M2M100ForConditionalGeneration.from_pretrained(path_to_model)
|
86 |
+
tokenizer = M2M100Tokenizer.from_pretrained(path_to_model)
|
87 |
+
|
88 |
+
sentence = "прийдя в МГТУ я был удивлен никого необноружив там…"
|
89 |
+
|
90 |
+
encodings = tokenizer(sentence, return_tensors="pt")
|
91 |
+
generated_tokens = model.generate(
|
92 |
+
**encodings, forced_bos_token_id=tokenizer.get_lang_id("ru"))
|
93 |
+
answer = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
94 |
+
print(answer)
|
95 |
+
|
96 |
+
# ["прийдя в МГТУ я был удивлен никого не обнаружив там..."]
|
97 |
+
```
|
98 |
+
|
99 |
+
## Resources
|
100 |
+
- [SAGE library code with augmentation methods, access to datasets and open models](https://github.com/orgs/ai-forever/sage), GitHub
|
101 |
+
- [ruM2M100-1.2B](https://huggingface.co/ai-forever/RuM2M100-1.2B), HuggingFace
|
102 |
+
- [ruM2M100-418M](https://huggingface.co/ai-forever/RuM2M100-420M), HuggingFace
|
103 |
+
- [FredT5-large-spell](https://huggingface.co/ai-forever/FRED-T5-large-spell), HuggingFace
|
104 |
+
- [T5-large-spell](https://huggingface.co/ai-forever/T5-large-spell), HuggingFace
|
105 |
+
|
106 |
+
## Licensing
|
107 |
+
Model [M2M100-1.2B](https://huggingface.co/facebook/m2m100_1.2B), on the basis of which our solution is made, and its source code are supplied under the MIT open license.
|
108 |
+
Our solution also comes with an MIT license.
|
109 |
+
|
110 |
+
## Contacts
|
111 |
+
For questions related to the operation and application of the model, please contact the product manager: Pavel Lebedev PIgLebedev@sberbank.ru.
|