ahmetburakbicer
commited on
Commit
•
5a40ebc
1
Parent(s):
df0fe21
Upload 6 files
Browse files- HandWritingDigitRecognition.py +79 -0
- model training.ipynb +183 -0
- model.py +51 -0
- model/model.h5 +3 -0
- model/model_weights.h5 +3 -0
- requirements.txt +4 -0
HandWritingDigitRecognition.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import ImageGrab
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import tkinter as tk
|
5 |
+
|
6 |
+
# Load the models that you have already trained
|
7 |
+
model = tf.keras.models.load_model("./model/model.h5")
|
8 |
+
model.load_weights("./model/model_weights.h5")
|
9 |
+
|
10 |
+
# Create the tkinter window
|
11 |
+
root = tk.Tk()
|
12 |
+
root.title("Handwritten Digit Recognition")
|
13 |
+
|
14 |
+
# Create the main canvas with black background color
|
15 |
+
canvas = tk.Canvas(root, width=280, height=250, bg='black')
|
16 |
+
canvas.pack()
|
17 |
+
|
18 |
+
screen = tk.Label(root, text="Draw a number", font=("Helvetica", 24))
|
19 |
+
screen.pack()
|
20 |
+
|
21 |
+
|
22 |
+
# Function to handle drawing on the canvas
|
23 |
+
def start_draw(event):
|
24 |
+
global last_x, last_y
|
25 |
+
last_x, last_y = event.x, event.y
|
26 |
+
|
27 |
+
|
28 |
+
def draw(event):
|
29 |
+
global last_x, last_y
|
30 |
+
x, y = event.x, event.y
|
31 |
+
canvas.create_line((last_x, last_y, x, y), fill="white", width=10)
|
32 |
+
last_x, last_y = x, y
|
33 |
+
|
34 |
+
|
35 |
+
# Function to predict the drawn digit
|
36 |
+
def predict_digit():
|
37 |
+
x = root.winfo_rootx() + canvas.winfo_x()
|
38 |
+
y = root.winfo_rooty() + canvas.winfo_y()
|
39 |
+
x1 = x + canvas.winfo_width()
|
40 |
+
y1 = y + canvas.winfo_height()
|
41 |
+
|
42 |
+
# There is a buggy area here
|
43 |
+
# When I try to capture the canvas image sometimes it captures wrong places.
|
44 |
+
# So I tried to fix it manually but, it still doesn't work perfect:(
|
45 |
+
img = ImageGrab.grab((x+31, y+38, x1, y1))
|
46 |
+
|
47 |
+
# See the captured image
|
48 |
+
# img.show()
|
49 |
+
|
50 |
+
img = img.convert('L')
|
51 |
+
img = img.resize((28, 28))
|
52 |
+
img_array = np.array(img)
|
53 |
+
img_array = img_array.reshape(1, 28, 28, 1) / 255.0 # Normalize input
|
54 |
+
prediction = model.predict(img_array)
|
55 |
+
|
56 |
+
# Hold the best prediction
|
57 |
+
predicted_digit = np.argmax(prediction)
|
58 |
+
screen.config(text="Predicted digit: " + str(predicted_digit))
|
59 |
+
|
60 |
+
|
61 |
+
# Function to clear the canvas
|
62 |
+
def clear_canvas():
|
63 |
+
canvas.delete("all")
|
64 |
+
screen.config(text="Draw a number")
|
65 |
+
|
66 |
+
|
67 |
+
# Bind mouse events
|
68 |
+
canvas.bind("<Button-1>", start_draw)
|
69 |
+
canvas.bind("<B1-Motion>", draw)
|
70 |
+
|
71 |
+
# Predict button
|
72 |
+
predict_button = tk.Button(root, text="Predict", command=predict_digit)
|
73 |
+
predict_button.pack()
|
74 |
+
|
75 |
+
reset_button = tk.Button(root, text="Clear", command=clear_canvas)
|
76 |
+
reset_button.pack()
|
77 |
+
|
78 |
+
# Start the main loop
|
79 |
+
root.mainloop()
|
model training.ipynb
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 2,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/"
|
23 |
+
},
|
24 |
+
"id": "1vuQoR42AF_N",
|
25 |
+
"outputId": "5c473da6-0bf9-42ac-8e7a-993d4522623f"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"output_type": "stream",
|
30 |
+
"name": "stdout",
|
31 |
+
"text": [
|
32 |
+
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
|
33 |
+
"11490434/11490434 [==============================] - 0s 0us/step\n",
|
34 |
+
"Epoch 1/10\n",
|
35 |
+
"468/468 [==============================] - 100s 210ms/step - loss: 0.3633 - accuracy: 0.8851 - val_loss: 0.0526 - val_accuracy: 0.9829\n",
|
36 |
+
"Epoch 2/10\n",
|
37 |
+
"468/468 [==============================] - 96s 204ms/step - loss: 0.1228 - accuracy: 0.9621 - val_loss: 0.0363 - val_accuracy: 0.9879\n",
|
38 |
+
"Epoch 3/10\n",
|
39 |
+
"468/468 [==============================] - 98s 209ms/step - loss: 0.0898 - accuracy: 0.9730 - val_loss: 0.0298 - val_accuracy: 0.9896\n",
|
40 |
+
"Epoch 4/10\n",
|
41 |
+
"468/468 [==============================] - 99s 210ms/step - loss: 0.0719 - accuracy: 0.9786 - val_loss: 0.0198 - val_accuracy: 0.9935\n",
|
42 |
+
"Epoch 5/10\n",
|
43 |
+
"468/468 [==============================] - 100s 213ms/step - loss: 0.0680 - accuracy: 0.9791 - val_loss: 0.0193 - val_accuracy: 0.9938\n",
|
44 |
+
"Epoch 6/10\n",
|
45 |
+
"468/468 [==============================] - 97s 207ms/step - loss: 0.0590 - accuracy: 0.9816 - val_loss: 0.0175 - val_accuracy: 0.9942\n",
|
46 |
+
"Epoch 7/10\n",
|
47 |
+
"468/468 [==============================] - 101s 216ms/step - loss: 0.0547 - accuracy: 0.9830 - val_loss: 0.0181 - val_accuracy: 0.9941\n",
|
48 |
+
"Epoch 8/10\n",
|
49 |
+
"468/468 [==============================] - 101s 215ms/step - loss: 0.0511 - accuracy: 0.9845 - val_loss: 0.0155 - val_accuracy: 0.9946\n",
|
50 |
+
"Epoch 9/10\n",
|
51 |
+
"468/468 [==============================] - 100s 214ms/step - loss: 0.0476 - accuracy: 0.9858 - val_loss: 0.0188 - val_accuracy: 0.9937\n",
|
52 |
+
"Epoch 10/10\n",
|
53 |
+
"468/468 [==============================] - 100s 213ms/step - loss: 0.0444 - accuracy: 0.9858 - val_loss: 0.0182 - val_accuracy: 0.9948\n"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"output_type": "execute_result",
|
58 |
+
"data": {
|
59 |
+
"text/plain": [
|
60 |
+
"<keras.src.callbacks.History at 0x7ef01c2c8520>"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
"metadata": {},
|
64 |
+
"execution_count": 2
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"source": [
|
68 |
+
"import tensorflow as tf\n",
|
69 |
+
"import numpy as np\n",
|
70 |
+
"\n",
|
71 |
+
"# Load the pre prepared data from TensofFlow\n",
|
72 |
+
"(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()\n",
|
73 |
+
"\n",
|
74 |
+
"# Preprocess the data\n",
|
75 |
+
"x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)\n",
|
76 |
+
"x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)\n",
|
77 |
+
"x_train = x_train.astype('float32')\n",
|
78 |
+
"x_test = x_test.astype('float32')\n",
|
79 |
+
"x_train /= 255\n",
|
80 |
+
"x_test /= 255\n",
|
81 |
+
"\n",
|
82 |
+
"# Define a CNN model with data augmentation\n",
|
83 |
+
"model = tf.keras.models.Sequential([\n",
|
84 |
+
" tf.keras.layers.Conv2D(64, (3, 3), activation=\"relu\", input_shape=(28, 28, 1)),\n",
|
85 |
+
" tf.keras.layers.MaxPooling2D(2, 2),\n",
|
86 |
+
" tf.keras.layers.Conv2D(64, (3, 3), activation=\"relu\"),\n",
|
87 |
+
" tf.keras.layers.MaxPooling2D(2, 2),\n",
|
88 |
+
" tf.keras.layers.Flatten(),\n",
|
89 |
+
" tf.keras.layers.Dense(512, activation=\"relu\"),\n",
|
90 |
+
" # Dropout to avoid from the overfitting\n",
|
91 |
+
" tf.keras.layers.Dropout(0.5),\n",
|
92 |
+
"\n",
|
93 |
+
" # There are 10 different (0-9) output.\n",
|
94 |
+
" # So use 10 units dense layer with softmax activation\n",
|
95 |
+
" tf.keras.layers.Dense(10, activation=\"softmax\"),\n",
|
96 |
+
"])\n",
|
97 |
+
"\n",
|
98 |
+
"# Compile the model\n",
|
99 |
+
"model.compile(optimizer='adam',\n",
|
100 |
+
" loss='sparse_categorical_crossentropy',\n",
|
101 |
+
" metrics=['accuracy'])\n",
|
102 |
+
"\n",
|
103 |
+
"# Data Augmentation\n",
|
104 |
+
"datagen = tf.keras.preprocessing.image.ImageDataGenerator(\n",
|
105 |
+
" rotation_range=10,\n",
|
106 |
+
" width_shift_range=0.1,\n",
|
107 |
+
" height_shift_range=0.1,\n",
|
108 |
+
" shear_range=0.1,\n",
|
109 |
+
" zoom_range=0.1\n",
|
110 |
+
")\n",
|
111 |
+
"\n",
|
112 |
+
"datagen.fit(x_train)\n",
|
113 |
+
"\n",
|
114 |
+
"# Train the model with data augmentation\n",
|
115 |
+
"model.fit(datagen.flow(x_train, y_train, batch_size=128),\n",
|
116 |
+
" steps_per_epoch=len(x_train) / 128,\n",
|
117 |
+
" epochs=10,\n",
|
118 |
+
" validation_data=(x_test, y_test))\n"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"source": [
|
124 |
+
"loss, acc = model.evaluate(x=x_test, y=y_test)\n",
|
125 |
+
"print(\"Loss:\", loss)\n",
|
126 |
+
"print(\"Accuracy:\", acc)"
|
127 |
+
],
|
128 |
+
"metadata": {
|
129 |
+
"colab": {
|
130 |
+
"base_uri": "https://localhost:8080/"
|
131 |
+
},
|
132 |
+
"id": "3O5b1ShcIE7-",
|
133 |
+
"outputId": "6ef12f6b-eaa2-4c85-97da-db2ee7d81b6e"
|
134 |
+
},
|
135 |
+
"execution_count": 3,
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"output_type": "stream",
|
139 |
+
"name": "stdout",
|
140 |
+
"text": [
|
141 |
+
"313/313 [==============================] - 4s 13ms/step - loss: 0.0182 - accuracy: 0.9948\n",
|
142 |
+
"Loss: 0.018189573660492897\n",
|
143 |
+
"Accuracy: 0.9947999715805054\n"
|
144 |
+
]
|
145 |
+
}
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"source": [
|
151 |
+
"# Save the model and model weights to a avaliable path\n"
|
152 |
+
],
|
153 |
+
"metadata": {
|
154 |
+
"id": "2pNqtozRN5wj"
|
155 |
+
}
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"source": [
|
160 |
+
"model.save(\"/content/model/model.h5\")\n",
|
161 |
+
"model.save_weights(\"/content/model/model_weights.h5\")"
|
162 |
+
],
|
163 |
+
"metadata": {
|
164 |
+
"colab": {
|
165 |
+
"base_uri": "https://localhost:8080/"
|
166 |
+
},
|
167 |
+
"id": "7Fp3_wYEKMF-",
|
168 |
+
"outputId": "14213539-b8bf-4774-8916-5a0ea28b23a2"
|
169 |
+
},
|
170 |
+
"execution_count": 4,
|
171 |
+
"outputs": [
|
172 |
+
{
|
173 |
+
"output_type": "stream",
|
174 |
+
"name": "stderr",
|
175 |
+
"text": [
|
176 |
+
"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n",
|
177 |
+
" saving_api.save_model(\n"
|
178 |
+
]
|
179 |
+
}
|
180 |
+
]
|
181 |
+
}
|
182 |
+
]
|
183 |
+
}
|
model.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
# Load the pre prepared data from TensofFlow
|
5 |
+
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
|
6 |
+
|
7 |
+
# Preprocess the data
|
8 |
+
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
|
9 |
+
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
|
10 |
+
x_train = x_train.astype('float32')
|
11 |
+
x_test = x_test.astype('float32')
|
12 |
+
x_train /= 255
|
13 |
+
x_test /= 255
|
14 |
+
|
15 |
+
# Define a CNN model with data augmentation
|
16 |
+
model = tf.keras.models.Sequential([
|
17 |
+
tf.keras.layers.Conv2D(64, (3, 3), activation="relu", input_shape=(28, 28, 1)),
|
18 |
+
tf.keras.layers.MaxPooling2D(2, 2),
|
19 |
+
tf.keras.layers.Conv2D(64, (3, 3), activation="relu"),
|
20 |
+
tf.keras.layers.MaxPooling2D(2, 2),
|
21 |
+
tf.keras.layers.Flatten(),
|
22 |
+
tf.keras.layers.Dense(512, activation="relu"),
|
23 |
+
# Dropout to avoid from the overfitting
|
24 |
+
tf.keras.layers.Dropout(0.5),
|
25 |
+
|
26 |
+
# There are 10 different (0-9) output.
|
27 |
+
# So use 10 units dense layer with softmax activation
|
28 |
+
tf.keras.layers.Dense(10, activation="softmax"),
|
29 |
+
])
|
30 |
+
|
31 |
+
# Compile the model
|
32 |
+
model.compile(optimizer='adam',
|
33 |
+
loss='sparse_categorical_crossentropy',
|
34 |
+
metrics=['accuracy'])
|
35 |
+
|
36 |
+
# Data Augmentation
|
37 |
+
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
|
38 |
+
rotation_range=10,
|
39 |
+
width_shift_range=0.1,
|
40 |
+
height_shift_range=0.1,
|
41 |
+
shear_range=0.1,
|
42 |
+
zoom_range=0.1
|
43 |
+
)
|
44 |
+
|
45 |
+
datagen.fit(x_train)
|
46 |
+
|
47 |
+
# Train the model with data augmentation
|
48 |
+
model.fit(datagen.flow(x_train, y_train, batch_size=128),
|
49 |
+
steps_per_epoch=len(x_train) / 128,
|
50 |
+
epochs=10,
|
51 |
+
validation_data=(x_test, y_test))
|
model/model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ae84744a8bc0e7eabf0dd277f89c23dc561c937deb12b13ac8cd0c13a33fed8
|
3 |
+
size 10393504
|
model/model_weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:240bd369c26bf4659c7d53de65e8e1f2177b369843187521a795999527ff1587
|
3 |
+
size 3472256
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PIL
|
2 |
+
tensorflow
|
3 |
+
numpytkinter
|
4 |
+
numpy
|