ahmetayrnc
commited on
Commit
•
d9bc5db
1
Parent(s):
cd320f8
update model card README.md
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ model-index:
|
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
-
value: 0.
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,17 +30,17 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the silicone dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss: 0.
|
34 |
-
- Accuracy: 0.
|
35 |
-
- Micro-precision: 0.
|
36 |
-
- Micro-recall: 0.
|
37 |
-
- Micro-f1: 0.
|
38 |
-
- Macro-precision: 0.
|
39 |
-
- Macro-recall: 0.
|
40 |
-
- Macro-f1: 0.
|
41 |
-
- Weighted-precision: 0.
|
42 |
-
- Weighted-recall: 0.
|
43 |
-
- Weighted-f1: 0.
|
44 |
|
45 |
## Model description
|
46 |
|
@@ -65,14 +65,13 @@ The following hyperparameters were used during training:
|
|
65 |
- seed: 42
|
66 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
- lr_scheduler_type: linear
|
68 |
-
- num_epochs:
|
69 |
|
70 |
### Training results
|
71 |
|
72 |
-
| Training Loss | Epoch | Step
|
73 |
-
|
74 |
-
| 0.
|
75 |
-
| 0.7774 | 2.0 | 11920 | 0.8422 | 0.7384 | 0.7384 | 0.7384 | 0.7384 | 0.4914 | 0.4392 | 0.4373 | 0.7095 | 0.7384 | 0.7133 |
|
76 |
|
77 |
|
78 |
### Framework versions
|
|
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
+
value: 0.7258658806190126
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the silicone dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.9158
|
34 |
+
- Accuracy: 0.7259
|
35 |
+
- Micro-precision: 0.7259
|
36 |
+
- Micro-recall: 0.7259
|
37 |
+
- Micro-f1: 0.7259
|
38 |
+
- Macro-precision: 0.3430
|
39 |
+
- Macro-recall: 0.3267
|
40 |
+
- Macro-f1: 0.3195
|
41 |
+
- Weighted-precision: 0.6825
|
42 |
+
- Weighted-recall: 0.7259
|
43 |
+
- Weighted-f1: 0.6938
|
44 |
|
45 |
## Model description
|
46 |
|
|
|
65 |
- seed: 42
|
66 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
- lr_scheduler_type: linear
|
68 |
+
- num_epochs: 1
|
69 |
|
70 |
### Training results
|
71 |
|
72 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 |
|
73 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
|
74 |
+
| 0.9087 | 1.0 | 2980 | 0.9158 | 0.7259 | 0.7259 | 0.7259 | 0.7259 | 0.3430 | 0.3267 | 0.3195 | 0.6825 | 0.7259 | 0.6938 |
|
|
|
75 |
|
76 |
|
77 |
### Framework versions
|