ahmetayrnc commited on
Commit
d9bc5db
1 Parent(s): cd320f8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -17
README.md CHANGED
@@ -20,7 +20,7 @@ model-index:
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
- value: 0.7383935151068534
24
  ---
25
 
26
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,17 +30,17 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the silicone dataset.
32
  It achieves the following results on the evaluation set:
33
- - Loss: 0.8422
34
- - Accuracy: 0.7384
35
- - Micro-precision: 0.7384
36
- - Micro-recall: 0.7384
37
- - Micro-f1: 0.7384
38
- - Macro-precision: 0.4914
39
- - Macro-recall: 0.4392
40
- - Macro-f1: 0.4373
41
- - Weighted-precision: 0.7095
42
- - Weighted-recall: 0.7384
43
- - Weighted-f1: 0.7133
44
 
45
  ## Model description
46
 
@@ -65,14 +65,13 @@ The following hyperparameters were used during training:
65
  - seed: 42
66
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
67
  - lr_scheduler_type: linear
68
- - num_epochs: 2
69
 
70
  ### Training results
71
 
72
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 |
73
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
74
- | 0.8271 | 1.0 | 5960 | 0.8467 | 0.7410 | 0.7410 | 0.7410 | 0.7410 | 0.4798 | 0.4163 | 0.4203 | 0.7098 | 0.7410 | 0.7165 |
75
- | 0.7774 | 2.0 | 11920 | 0.8422 | 0.7384 | 0.7384 | 0.7384 | 0.7384 | 0.4914 | 0.4392 | 0.4373 | 0.7095 | 0.7384 | 0.7133 |
76
 
77
 
78
  ### Framework versions
 
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
+ value: 0.7258658806190126
24
  ---
25
 
26
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on the silicone dataset.
32
  It achieves the following results on the evaluation set:
33
+ - Loss: 0.9158
34
+ - Accuracy: 0.7259
35
+ - Micro-precision: 0.7259
36
+ - Micro-recall: 0.7259
37
+ - Micro-f1: 0.7259
38
+ - Macro-precision: 0.3430
39
+ - Macro-recall: 0.3267
40
+ - Macro-f1: 0.3195
41
+ - Weighted-precision: 0.6825
42
+ - Weighted-recall: 0.7259
43
+ - Weighted-f1: 0.6938
44
 
45
  ## Model description
46
 
 
65
  - seed: 42
66
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
67
  - lr_scheduler_type: linear
68
+ - num_epochs: 1
69
 
70
  ### Training results
71
 
72
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 |
73
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
74
+ | 0.9087 | 1.0 | 2980 | 0.9158 | 0.7259 | 0.7259 | 0.7259 | 0.7259 | 0.3430 | 0.3267 | 0.3195 | 0.6825 | 0.7259 | 0.6938 |
 
75
 
76
 
77
  ### Framework versions