ahmeddbahaa commited on
Commit
fe11224
·
1 Parent(s): df43c69

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ datasets:
7
+ - xlsum
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: mt5-small-finetuned-mt5-en
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: xlsum
18
+ type: xlsum
19
+ args: english
20
+ metrics:
21
+ - name: Rouge1
22
+ type: rouge
23
+ value: 23.8952
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # mt5-small-finetuned-mt5-en
30
+
31
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 2.8345
34
+ - Rouge1: 23.8952
35
+ - Rouge2: 5.8792
36
+ - Rougel: 18.6495
37
+ - Rougelsum: 18.7057
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 0.0005
57
+ - train_batch_size: 4
58
+ - eval_batch_size: 4
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 10
61
+ - total_train_batch_size: 40
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 100
65
+ - num_epochs: 3
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
70
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
71
+ | No log | 1.0 | 224 | 3.0150 | 24.4639 | 5.3016 | 18.3987 | 18.4963 |
72
+ | No log | 2.0 | 448 | 2.8738 | 24.5075 | 5.842 | 18.8133 | 18.9072 |
73
+ | No log | 3.0 | 672 | 2.8345 | 23.8952 | 5.8792 | 18.6495 | 18.7057 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.17.0
79
+ - Pytorch 1.10.0+cu111
80
+ - Datasets 2.0.0
81
+ - Tokenizers 0.11.6