ahmeddbahaa
commited on
Commit
·
fe11224
1
Parent(s):
df43c69
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- xlsum
|
8 |
+
metrics:
|
9 |
+
- rouge
|
10 |
+
model-index:
|
11 |
+
- name: mt5-small-finetuned-mt5-en
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Sequence-to-sequence Language Modeling
|
15 |
+
type: text2text-generation
|
16 |
+
dataset:
|
17 |
+
name: xlsum
|
18 |
+
type: xlsum
|
19 |
+
args: english
|
20 |
+
metrics:
|
21 |
+
- name: Rouge1
|
22 |
+
type: rouge
|
23 |
+
value: 23.8952
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# mt5-small-finetuned-mt5-en
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 2.8345
|
34 |
+
- Rouge1: 23.8952
|
35 |
+
- Rouge2: 5.8792
|
36 |
+
- Rougel: 18.6495
|
37 |
+
- Rougelsum: 18.7057
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.0005
|
57 |
+
- train_batch_size: 4
|
58 |
+
- eval_batch_size: 4
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 10
|
61 |
+
- total_train_batch_size: 40
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_steps: 100
|
65 |
+
- num_epochs: 3
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
71 |
+
| No log | 1.0 | 224 | 3.0150 | 24.4639 | 5.3016 | 18.3987 | 18.4963 |
|
72 |
+
| No log | 2.0 | 448 | 2.8738 | 24.5075 | 5.842 | 18.8133 | 18.9072 |
|
73 |
+
| No log | 3.0 | 672 | 2.8345 | 23.8952 | 5.8792 | 18.6495 | 18.7057 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.17.0
|
79 |
+
- Pytorch 1.10.0+cu111
|
80 |
+
- Datasets 2.0.0
|
81 |
+
- Tokenizers 0.11.6
|