ahmeddbahaa commited on
Commit
0898e8e
·
1 Parent(s): bc887f2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ datasets:
7
+ - xlsum
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: AraBART-finetuned-ar
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: xlsum
18
+ type: xlsum
19
+ args: arabic
20
+ metrics:
21
+ - name: Rouge1
22
+ type: rouge
23
+ value: 2.2459
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # AraBART-finetuned-ar
30
+
31
+ This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the xlsum dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 2.3785
34
+ - Rouge1: 2.2459
35
+ - Rouge2: 0.0
36
+ - Rougel: 2.2459
37
+ - Rougelsum: 2.2459
38
+ - Gen Len: 19.695
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 5e-05
58
+ - train_batch_size: 4
59
+ - eval_batch_size: 4
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 16
62
+ - total_train_batch_size: 64
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - lr_scheduler_warmup_ratio: 0.6
66
+ - num_epochs: 10
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
71
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
72
+ | No log | 0.98 | 32 | 2.7774 | 1.0638 | 0.0 | 1.0638 | 1.182 | 19.5177 |
73
+ | No log | 1.98 | 64 | 2.4730 | 1.182 | 0.0 | 1.3002 | 1.182 | 19.8121 |
74
+ | No log | 2.98 | 96 | 2.4129 | 2.3641 | 0.3546 | 2.3641 | 2.3641 | 19.8298 |
75
+ | No log | 3.98 | 128 | 2.3724 | 2.1277 | 0.3546 | 2.1277 | 2.1277 | 19.8121 |
76
+ | No log | 4.98 | 160 | 2.3560 | 1.8913 | 0.3546 | 1.8913 | 1.8913 | 19.805 |
77
+ | No log | 5.98 | 192 | 2.3574 | 1.5366 | 0.0 | 1.5366 | 1.6548 | 19.7979 |
78
+ | No log | 6.98 | 224 | 2.3676 | 2.1277 | 0.3546 | 2.2459 | 2.1277 | 19.6348 |
79
+ | No log | 7.98 | 256 | 2.3656 | 2.0095 | 0.0 | 2.0095 | 2.0095 | 19.844 |
80
+ | No log | 8.98 | 288 | 2.3751 | 2.2459 | 0.0 | 2.3641 | 2.2459 | 19.6738 |
81
+ | No log | 9.98 | 320 | 2.3785 | 2.2459 | 0.0 | 2.2459 | 2.2459 | 19.695 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.17.0
87
+ - Pytorch 1.10.0+cu111
88
+ - Datasets 2.0.0
89
+ - Tokenizers 0.11.6