PPO-LunarLander-v2 / config.json
ahforoughi's picture
Upload PPO LunarLander-v2 trained agent
a1d2b57 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dc83d117910>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dc83d1179a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dc83d117a30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dc83d117ac0>", "_build": "<function ActorCriticPolicy._build at 0x7dc83d117b50>", "forward": "<function ActorCriticPolicy.forward at 0x7dc83d117be0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dc83d117c70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dc83d117d00>", "_predict": "<function ActorCriticPolicy._predict at 0x7dc83d117d90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dc83d117e20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dc83d117eb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dc83d117f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dc83d2c9a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713146305060435986, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICCdL3hUoy6lilnOdrY1rWBU/Q6KciFuAAAgD8AAIA/M7D/PI+WELp29cs6ohDttCnji7sCVO65AACAPwAAgD8AUZq91kaGP+VNz7wTaYe+gfe/vNsSlj0AAAAAAAAAAM0Ql71IeYm6a3V2OklDXTWxsS67TmePuQAAgD8AAIA/c12uvaLq3D7juOk95is0voovtzwiYmU9AAAAAAAAAACmkeK99gQRurLxjzs6XhI32Ab1OZWBCDYAAIA/AACAP82xzr0UKJq6s4RWupUdwbZnPNa5E153OQAAgD8AAIA/M/PgvfZEB7pSFKk6XjUAtet6Ebr11sW5AACAPwAAgD9moBo9KWhmuqVNUzipMCkzEUxXu9UieLcAAIA/AACAP4Aw5r32hE66LweTOzMxrDiP1Wa70iYgugAAAAAAAAAAs9wavcNVbbpYUOM6CT6XtBeiB7tx1wG6AACAPwAAgD8aqZq9FCCcuqA11zrm87o1hXjSOI5h+LkAAIA/AACAPwC0ND327GS6Ukw6OpUi0rTF5kS7tiVVuQAAgD8AAIA/hrtVPtZQiz6OT0O+2yFevpSrpLvn4j09AAAAAAAAAADAhI29UtDHuZX5aTrE2iU29eZgOzKri7kAAIA/AACAPxqOBz17ZoK6YAl1Ou9uMzXMKsW5QoeOuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGeTP6j3226MAWyUTegDjAF0lEdAm9QihnJ1aHV9lChoBkdAaaYk9lmOEWgHTegDaAhHQJvfmY5T6zp1fZQoaAZHQGKJjNY8uBdoB03oA2gIR0Cb4VshgVoIdX2UKGgGR0Bhmb+xW1c/aAdN6ANoCEdAm+MmSQo1DXV9lChoBkfAJEwrlNlAeWgHTRIBaAhHQJvjZLIxQBR1fZQoaAZHQGU9W12JSBNoB03oA2gIR0Cb6BgCOmzjdX2UKGgGR0Bfm4s3AEdOaAdN6ANoCEdAm+na1G9YfXV9lChoBkdAYfj8lXzUZ2gHTegDaAhHQJvqygAZKnN1fZQoaAZHQGU/KH446wNoB03oA2gIR0Cb7EJbt7a7dX2UKGgGR0BnacZxaPjoaAdN6ANoCEdAm+2upfhMrXV9lChoBkdAXbADnvDxb2gHTegDaAhHQJvujPD50r91fZQoaAZHQF3BbSZ0CBBoB03oA2gIR0Cb9N71qWTpdX2UKGgGR0BPcb8vVVghaAdL+mgIR0Cb9RX+l0o0dX2UKGgGR0AwajmSyMUAaAdL8WgIR0Cb9l6hQFcIdX2UKGgGR0Bj7VTvRZ2ZaAdN6ANoCEdAm/xhZZB9kXV9lChoBkdAYYOEvkBCD2gHTegDaAhHQJwBx5eJHiF1fZQoaAZHQGRL2pIczZZoB03oA2gIR0CcBhLs8gZCdX2UKGgGR0BiQ9dE9dNWaAdN6ANoCEdAnBvE/4ZdfXV9lChoBkdAYTCP/7zkIWgHTegDaAhHQJwj0f7rLQp1fZQoaAZHQGe6qziS7oVoB03oA2gIR0CcMmZ8rqdIdX2UKGgGR0Bjbm5BkZrIaAdN6ANoCEdAnDRK/Zdv9HV9lChoBkdAYaP93KSxJWgHTegDaAhHQJw2PmCAc1h1fZQoaAZHQGXUK0UoKD1oB03oA2gIR0CcNoZjQRf4dX2UKGgGR0Blhp4B3iaRaAdN6ANoCEdAnD6CoGY8dXV9lChoBkdAY7nzxPO6d2gHTegDaAhHQJxAH8XN1Qt1fZQoaAZHQGHMEAHVwxZoB03oA2gIR0CcQbhCMPz4dX2UKGgGR0BkZ1OfukULaAdN6ANoCEdAnEKaS5iEx3V9lChoBkdAYoOXvYvnKWgHTegDaAhHQJxJDMINVip1fZQoaAZHQGSAJAlfJFNoB03oA2gIR0CcSUDklu3udX2UKGgGR0BiLu+GoJiRaAdN6ANoCEdAnEpVvhqCYnV9lChoBkdAYWU44Ia99WgHTegDaAhHQJxOXeVLSNR1fZQoaAZHQGNUh6Skj5doB03oA2gIR0CcUpMgU1yedX2UKGgGR0BlS+9lEqlQaAdN6ANoCEdAnFZhPXTVlXV9lChoBkdAYIMH5aePJmgHTegDaAhHQJxa5VS4vvl1fZQoaAZHQEsMkxASnLtoB0vuaAhHQJxzozzmOlx1fZQoaAZHQGXkGEoOQQtoB03oA2gIR0CcdE2gFotddX2UKGgGR0BmpIuXeFcqaAdN6ANoCEdAnH94valDW3V9lChoBkdAZ4pW1+iJwmgHTegDaAhHQJyBGUxEfDF1fZQoaAZHQGY5VM/QjUxoB03oA2gIR0CcguLSNOuadX2UKGgGR0Bk8Vc2R7qqaAdN6ANoCEdAnIMgvlEJB3V9lChoBkdAZObUWEbo82gHTegDaAhHQJyMLiZOSGJ1fZQoaAZHQF+61kUbkwNoB03oA2gIR0Ccjro/iYLLdX2UKGgGR0BlNCcCo0hvaAdN6ANoCEdAnJDqQV9F4XV9lChoBkdAZNp7cfvF32gHTegDaAhHQJyR4RlHz6J1fZQoaAZHQGXkkuYhMaloB03oA2gIR0CcmSxzaK1pdX2UKGgGR0BgVVszl90BaAdN6ANoCEdAnJlvYzzmOnV9lChoBkdAYRk52hZha2gHTegDaAhHQJyau6y0KJF1fZQoaAZHQEX48Emplz5oB0vpaAhHQJydAHRkVet1fZQoaAZHQGAOqbBoEjhoB03oA2gIR0Ccn8qur6tUdX2UKGgGR0BCYposZpBYaAdL+2gIR0CcqSRNyo4udX2UKGgGR0BiRyBmPHT7aAdN6ANoCEdAnKnQ4GUwBnV9lChoBkdAZyzschkiEGgHTegDaAhHQJyt9e+mFal1fZQoaAZHQGMmC3PRiPRoB03oA2gIR0CcyOjz7MxHdX2UKGgGR0BiHuuHN5dGaAdN6ANoCEdAnMmqsMiKSHV9lChoBkdAYyfiZOSGJ2gHTegDaAhHQJzVwQz1sch1fZQoaAZHQFyAypJf6XVoB03oA2gIR0Cc16hUR3/xdX2UKGgGR0BkQAQ6IWP+aAdN6ANoCEdAnNl6K1og3nV9lChoBkdAYG6Q8OkLyGgHTegDaAhHQJzZwmv4dp91fZQoaAZHQGLG22w3YL9oB03oA2gIR0Cc4mGe+VTrdX2UKGgGR0BiImyNXHR1aAdN6ANoCEdAnOZtD6WPcXV9lChoBkdAXoTsC1Z1WGgHTegDaAhHQJznqrwOOKh1fZQoaAZHQGYNxu89Oh1oB03oA2gIR0Cc8lAdGRV7dX2UKGgGR0BffRvR7Z3+aAdN6ANoCEdAnPPGN3np0XV9lChoBkdAYpHNg0CRwWgHTegDaAhHQJz2DyOJcgR1fZQoaAZHQGI8YgaFVT9oB03oA2gIR0Cc+KEzwc5sdX2UKGgGR0Bj9ndbgTAWaAdN6ANoCEdAnQEYBq9GqnV9lChoBkdAZNQ2gnMMZ2gHTegDaAhHQJ0BpP69CeF1fZQoaAZHQGai0RWcSXdoB03oA2gIR0CdBXUDMeOodX2UKGgGR0BcDHztkWhzaAdN6ANoCEdAnSBHT/hl2HV9lChoBkdAY/NrrxAjZGgHTegDaAhHQJ0hSaoddVx1fZQoaAZHQGE2O4PPLPloB03oA2gIR0CdLNjRD1GtdX2UKGgGR0BiagCnxaxHaAdN6ANoCEdAnS6vzOHFgnV9lChoBkdAZz6KLKmsNmgHTegDaAhHQJ0wmr6tT1l1fZQoaAZHQF/qU7jkuHxoB03oA2gIR0CdMOAHVwxWdX2UKGgGR0BonS3/giu/aAdN6ANoCEdAnTlV8stkF3V9lChoBkdAZO1efI0ZWWgHTegDaAhHQJ09V/smfGx1fZQoaAZHQGJ9DABT4tZoB03oA2gIR0CdPnSeRPoFdX2UKGgGR0BeOj1K5CnhaAdN6ANoCEdAnUdIMrmQsHV9lChoBkdAYcG7U5MlC2gHTegDaAhHQJ1I044p+c91fZQoaAZHQGVxZS3solVoB03oA2gIR0CdS/ZTQ3PzdX2UKGgGR0Befcg+yJKraAdN6ANoCEdAnU+tpM6BAnV9lChoBkdAZqfdE9dNWWgHTegDaAhHQJ1ZiICU5dZ1fZQoaAZHQGBQc2aUiY9oB03oA2gIR0CdWh+XZ5AydX2UKGgGR0BklGkFfReDaAdN6ANoCEdAnV4PVRUFS3V9lChoBkdAWrrXNC7btmgHTegDaAhHQJ12QAS39aV1fZQoaAZHQGGR1c2R7qpoB03oA2gIR0CddvgTh5xBdX2UKGgGR0BhlaRp1zQvaAdN6ANoCEdAnYR4oRZlnXV9lChoBkdAY2D/MGHHm2gHTegDaAhHQJ2GII1LrX11fZQoaAZHQGamUWdmQKdoB03oA2gIR0Cdh9ZpBX0YdX2UKGgGR0BjGwb4rSVoaAdN6ANoCEdAnYgZk9U0enV9lChoBkdAZvSZy+6AfGgHTegDaAhHQJ2PMHdGiHt1fZQoaAZHQGClgB1cMVloB03oA2gIR0CdkkUKiO/+dX2UKGgGR0Ba6rMPjGT+aAdN6ANoCEdAnZMtDc/MXHV9lChoBkdAYrsY6XBxgmgHTegDaAhHQJ2aXBnBciZ1fZQoaAZHQGS9H31zySVoB03oA2gIR0Cdm8PqcEvCdX2UKGgGR0BnNsjgQ6IWaAdN6ANoCEdAnZ35ftx+8XV9lChoBkdAZ6pdgv114mgHTegDaAhHQJ2grNPgvUV1fZQoaAZHQGWPG47Rv3toB03oA2gIR0CdqaJAMUh3dX2UKGgGR0BiuLtgKF7EaAdN6ANoCEdAnao5djXnQ3V9lChoBkdAY2SVN5+pfmgHTegDaAhHQJ2vSesgdOt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}