Minor changes to readme
Browse files
README.md
CHANGED
@@ -10,7 +10,9 @@ tags:
|
|
10 |
- computational-social-science
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
## Load the model and tokenizer
|
16 |
|
@@ -24,6 +26,17 @@ model = LLM(model="ahalt/event-attribute-extractor",
|
|
24 |
gpu_memory_utilization=0.80)
|
25 |
|
26 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
```
|
28 |
|
29 |
|
@@ -73,8 +86,8 @@ In a joint statement published Saturday on social media, the National Anti-Corru
|
|
73 |
|
74 |
event_type = "Investigate, charge, or prosecute"
|
75 |
|
76 |
-
prompt = make_prompt(text, event_type,
|
77 |
-
output =
|
78 |
response = output[0].outputs[0].text.strip()
|
79 |
|
80 |
[{"event_type": "Investigate, charge, or prosecute",
|
|
|
10 |
- computational-social-science
|
11 |
---
|
12 |
|
13 |
+
|
14 |
+
|
15 |
+
# Example usage with vLLM
|
16 |
|
17 |
## Load the model and tokenizer
|
18 |
|
|
|
26 |
gpu_memory_utilization=0.80)
|
27 |
|
28 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B")
|
29 |
+
|
30 |
+
|
31 |
+
sampling_params = SamplingParams(
|
32 |
+
temperature=0.5, # Greedy decoding breaks Qwen
|
33 |
+
top_p=0.8, # Qwen3 non-thinking recommendation
|
34 |
+
top_k=20, # Qwen3 recommendation
|
35 |
+
presence_penalty=1.5, # Recommended for quantized models
|
36 |
+
min_p=0.0,
|
37 |
+
#guided_decoding=guided_decoding_params, # Optionally, set a JSON schema for contrained decoding
|
38 |
+
max_tokens=1024,
|
39 |
+
)
|
40 |
```
|
41 |
|
42 |
|
|
|
86 |
|
87 |
event_type = "Investigate, charge, or prosecute"
|
88 |
|
89 |
+
prompt = make_prompt(text, event_type, tokenizer)
|
90 |
+
output = model.generate(prompt, sampling_params=sampling_params)
|
91 |
response = output[0].outputs[0].text.strip()
|
92 |
|
93 |
[{"event_type": "Investigate, charge, or prosecute",
|