Arnas
refactor
e7650e8
import numpy as np
import pennylane as qml
import torch.nn as nn
def encode(n_qubits, inputs):
for wire in range(n_qubits):
qml.RX(inputs[wire], wires=wire)
def layer(n_qubits, y_weight, z_weight):
for wire, y_weight in enumerate(y_weight):
qml.RY(y_weight, wires=wire)
for wire, z_weight in enumerate(z_weight):
qml.RZ(z_weight, wires=wire)
for wire in range(n_qubits):
qml.CZ(wires=[wire, (wire + 1) % n_qubits])
def measure(n_qubits):
return [qml.expval(qml.PauliZ(wire)) for wire in range(n_qubits)]
def get_model(n_qubits, n_layers, data_reupload):
# NOTE: need to select an appropriate device
# dev = qml.device('lightning.gpu', wires=n_qubits)
dev = qml.device("default.qubit", wires=n_qubits)
shapes = {
"y_weights": (n_layers, n_qubits),
"z_weights": (n_layers, n_qubits)
}
@qml.qnode(dev, interface='torch')
def circuit(inputs, y_weights, z_weights):
for layer_idx in range(n_layers):
if (layer_idx == 0) or data_reupload:
encode(n_qubits, inputs)
layer(n_qubits, y_weights[layer_idx], z_weights[layer_idx])
return measure(n_qubits)
model = qml.qnn.TorchLayer(circuit, shapes)
return model
class QuantumNet(nn.Module):
def __init__(self, n_layers):
super(QuantumNet, self).__init__()
self.n_qubits = 4
self.n_actions = 4
self.q_layers = get_model(n_qubits=self.n_qubits,
n_layers=n_layers,
data_reupload=False)
def forward(self, inputs):
inputs = inputs * np.pi
outputs = self.q_layers(inputs)
outputs = (1 + outputs) / 2
return outputs