agercas commited on
Commit
2ae22b2
1 Parent(s): 82df25b

Upload Updated PPO LunarLander-v2 agent, trained for 5M steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 185.62 +/- 31.25
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 291.38 +/- 18.08
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d6b4d80e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d6b4d8170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d6b4d8200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d6b4d8290>", "_build": "<function ActorCriticPolicy._build at 0x7f1d6b4d8320>", "forward": "<function ActorCriticPolicy.forward at 0x7f1d6b4d83b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d6b4d8440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1d6b4d84d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d6b4d8560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d6b4d85f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d6b4d8680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1d6b51fa20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669751037599997058, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPrdj4YD6w9Rhm0vezHN76UJti77azcvQAAAAAAAAAAzaJEvB8d6bkSylM87Q5mtoeD2LoAHmq1AACAPwAAgD+g8CU+BZSIu/Y7ETu75jC4XqXPvHDYKroAAIA/AACAPzNnhj7FgN88eAwWuh2KwrhIQ3Q+5lpOOQAAgD8AAIA/MzA3PVzHWbqKsNS6ER23Myao+rqN/vQ5AACAPwAAgD/mUQy+7J+Gu0RFE7w6ifK5gYG2PJVRAjsAAIA/AACAPxrAXD5ndEY/0smzPSNIhL5c6b89uwpivQAAAAAAAAAAzazWusPtYroTOIW7zPk1PGY4HDvATGK7AACAPwAAgD/ttVA+H3J4PzZO2z2B+oa+VF0FPtgFSL4AAAAAAAAAAJrz8TzsiZa5BcDtu0mzJbaYJZC75PKVNQAAgD8AAIA/M7+6vFw7TLpNswy6NT5tto4HBzpK2yE5AACAPwAAgD/NVo88SK2XujRAB7wdjMM7VhmHO7HHqbwAAIA/AACAP8qVX74dNiC9JMs0vDPC/Lp1vIo+1IW3OwAAgD8AAIA/OlAQPkg9vLp0Spm7BZICOTNRFbwQb2Q6AACAPwAAgD8A0Ia9TV5UPrSsjD32npC+SQoovAP0qr0AAAAAAAAAAFOnSD60vaC84h8FPLpiYroLNxC+9/4wuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICTcZVYbxVECUhpRSlIwBbJRN6AOMAXSUR0CX4dP9DQZ5dX2UKGgGaAloD0MIn5JzYg+zWUCUhpRSlGgVTegDaBZHQJfjamoBJZp1fZQoaAZoCWgPQwhWtg95yx1eQJSGlFKUaBVN6ANoFkdAl+g89nscAHV9lChoBmgJaA9DCAEz38FPQknAlIaUUpRoFU0lAWgWR0CX7GNnXd0rdX2UKGgGaAloD0MIoDcVqTAaSECUhpRSlGgVTegDaBZHQJfzhU83dbh1fZQoaAZoCWgPQwiynlp9dd0jQJSGlFKUaBVLyWgWR0CX8+pZwGW2dX2UKGgGaAloD0MINX7hlSSSW0CUhpRSlGgVTegDaBZHQJf4cFr2xpt1fZQoaAZoCWgPQwgr2hznNqpiQJSGlFKUaBVN6ANoFkdAl/khkNFz+3V9lChoBmgJaA9DCLMkQE0tP09AlIaUUpRoFU3oA2gWR0CX/JdZq20BdX2UKGgGaAloD0MI0EICRpcoXkCUhpRSlGgVTegDaBZHQJghWxOclPd1fZQoaAZoCWgPQwiH/DOD+ClgQJSGlFKUaBVN6ANoFkdAmCJPWxyGSXV9lChoBmgJaA9DCGwKZHYWLGJAlIaUUpRoFU3oA2gWR0CYKDKPn0TUdX2UKGgGaAloD0MI5Nu7Bv3ZYUCUhpRSlGgVTegDaBZHQJgzPDwYtQN1fZQoaAZoCWgPQwgIyQImcK5fQJSGlFKUaBVN6ANoFkdAmDVneJpFkXV9lChoBmgJaA9DCLJMv0Q8QGBAlIaUUpRoFU3oA2gWR0CYN1Ixgy/LdX2UKGgGaAloD0MI66pALQb9WECUhpRSlGgVTegDaBZHQJg4bAi3XqZ1fZQoaAZoCWgPQwhgeCXJ8ylkQJSGlFKUaBVN6ANoFkdAmDh+cYqG13V9lChoBmgJaA9DCObLC7APpmRAlIaUUpRoFU3oA2gWR0CYOMchkiD/dX2UKGgGaAloD0MIFQFO72KLYkCUhpRSlGgVTegDaBZHQJg6k3eenQ91fZQoaAZoCWgPQwgVUn5S7XlgQJSGlFKUaBVN6ANoFkdAmETUQbuMM3V9lChoBmgJaA9DCMPvplv2W2FAlIaUUpRoFU0LA2gWR0CYR5cinpB5dX2UKGgGaAloD0MIJAwDllxZT0CUhpRSlGgVTegDaBZHQJhMVuLrHEN1fZQoaAZoCWgPQwiRnEzcKvNTQJSGlFKUaBVN6ANoFkdAmEy5wKjSHHV9lChoBmgJaA9DCDARb51/n15AlIaUUpRoFU3oA2gWR0CYURDej2zwdX2UKGgGaAloD0MI+x711yuFUkCUhpRSlGgVTegDaBZHQJhRt+NLlFN1fZQoaAZoCWgPQwgTueAM/ro+wJSGlFKUaBVLzWgWR0CYUbmwqy4XdX2UKGgGaAloD0MIQwBw7NmzJUCUhpRSlGgVS+loFkdAmFWQKfFrEnV9lChoBmgJaA9DCHMPCd/7HWhAlIaUUpRoFU3lAmgWR0CYVqw4KhL5dX2UKGgGaAloD0MIZmZmZmbiPkCUhpRSlGgVS8JoFkdAmG+bdrO7hHV9lChoBmgJaA9DCI+pu7ILqltAlIaUUpRoFU3oA2gWR0CYdC0cOskqdX2UKGgGaAloD0MIIy4AjVJFYECUhpRSlGgVTegDaBZHQJh0xNATqSp1fZQoaAZoCWgPQwgIBhA+lE5dQJSGlFKUaBVN6ANoFkdAmIQxBAv+O3V9lChoBmgJaA9DCEbPLXQlk1tAlIaUUpRoFU3oA2gWR0CYhmx//echdX2UKGgGaAloD0MIC12JQPX5YkCUhpRSlGgVTegDaBZHQJiIbkcS5Ah1fZQoaAZoCWgPQwh/hjdr8D1gQJSGlFKUaBVN6ANoFkdAmImn05EMLHV9lChoBmgJaA9DCF4QkZp2AWFAlIaUUpRoFU3oA2gWR0CYibmhufmLdX2UKGgGaAloD0MIdoh/2NJAXkCUhpRSlGgVTegDaBZHQJiKBEw35vd1fZQoaAZoCWgPQwg/kSdJ11taQJSGlFKUaBVN6ANoFkdAmIvY2jwhGHV9lChoBmgJaA9DCHxCdt7GBhvAlIaUUpRoFUu0aBZHQJiPhwrDqGF1fZQoaAZoCWgPQwhTsMbZdNxiQJSGlFKUaBVN6ANoFkdAmJ+mUjcEeXV9lChoBmgJaA9DCKD83TtqcmFAlIaUUpRoFU3oA2gWR0CYoDVM23rldX2UKGgGaAloD0MIJXhDGhXCY0CUhpRSlGgVTegDaBZHQJiljohY/3Z1fZQoaAZoCWgPQwj9hokGKa5eQJSGlFKUaBVN6ANoFkdAmKZbLdN34nV9lChoBmgJaA9DCKfn3VhQxlVAlIaUUpRoFU3oA2gWR0CYq2YlpoK2dX2UKGgGaAloD0MIwjQMHxGdWECUhpRSlGgVTegDaBZHQJis8Nwzch11fZQoaAZoCWgPQwhLkXwlkHVTQJSGlFKUaBVN6ANoFkdAmMeXoX9BKXV9lChoBmgJaA9DCPYLdsO2eFJAlIaUUpRoFUvtaBZHQJjJz/4qPOp1fZQoaAZoCWgPQwiLcf4mlBRjQJSGlFKUaBVN6ANoFkdAmMyDOX3QD3V9lChoBmgJaA9DCC15PC0/kFRAlIaUUpRoFU3oA2gWR0CYzR0WdmQKdX2UKGgGaAloD0MIR1m/mZgKOMCUhpRSlGgVS9doFkdAmNx1nAZbZHV9lChoBmgJaA9DCHbgnBGlIWBAlIaUUpRoFU3oA2gWR0CY4AK/mDDkdX2UKGgGaAloD0MIcM0d/S/3U0CUhpRSlGgVTegDaBZHQJjiMj3VTaV1fZQoaAZoCWgPQwgAVkeO9DJhQJSGlFKUaBVN6ANoFkdAmONwPmPo3nV9lChoBmgJaA9DCI8c6QyMpGBAlIaUUpRoFU3oA2gWR0CY44PVurIYdX2UKGgGaAloD0MIhKCjVS01VkCUhpRSlGgVTegDaBZHQJjj1JDmbLF1fZQoaAZoCWgPQwh5XFSLiJ1XQJSGlFKUaBVN6ANoFkdAmOWrsKLKm3V9lChoBmgJaA9DCJRPj20ZTFdAlIaUUpRoFU3oA2gWR0CY6Y8FpwjudX2UKGgGaAloD0MIouwt5XwjWUCUhpRSlGgVTegDaBZHQJj4vxmTTv11fZQoaAZoCWgPQwgEPdS2YapaQJSGlFKUaBVN6ANoFkdAmPkv/FR51XV9lChoBmgJaA9DCKg4DrxawF1AlIaUUpRoFU3oA2gWR0CY/ydmxt52dX2UKGgGaAloD0MIhXtl3qp9W0CUhpRSlGgVTegDaBZHQJkEU/6frbB1fZQoaAZoCWgPQwh8tg4O9pNcQJSGlFKUaBVN6ANoFkdAmQWrb+Lm63V9lChoBmgJaA9DCAYN/RNcy2FAlIaUUpRoFU3oA2gWR0CZDJ2vjfeldX2UKGgGaAloD0MInUfF/x1CZECUhpRSlGgVTegDaBZHQJkh/4sVclh1fZQoaAZoCWgPQwjSNv5EZQVWQJSGlFKUaBVN6ANoFkdAmSSp17pmmXV9lChoBmgJaA9DCAVSYtd2GGBAlIaUUpRoFU3oA2gWR0CZNHnXumaZdX2UKGgGaAloD0MIMjogCfuvV0CUhpRSlGgVTegDaBZHQJk3qe4Cp3p1fZQoaAZoCWgPQwgFhqxu9cxjQJSGlFKUaBVN6ANoFkdAmTmeGoJiRXV9lChoBmgJaA9DCA6D+Stk8FxAlIaUUpRoFU3oA2gWR0CZOrqDsdDIdX2UKGgGaAloD0MIshAdAkfWYECUhpRSlGgVTegDaBZHQJk6zQTmGM51fZQoaAZoCWgPQwhEwCFUqYZeQJSGlFKUaBVN6ANoFkdAmTsWhh6SknV9lChoBmgJaA9DCGKDhZM0amdAlIaUUpRoFU0XAmgWR0CZPE1L8JlbdX2UKGgGaAloD0MIFvw2xHg1ZkCUhpRSlGgVTegDaBZHQJk8x79hqj91fZQoaAZoCWgPQwg/OQoQBQJeQJSGlFKUaBVN6ANoFkdAmT/o24uscXV9lChoBmgJaA9DCFuWr8vwz2NAlIaUUpRoFU3oA2gWR0CZTSUTL4etdX2UKGgGaAloD0MIAp1Jm6p+XUCUhpRSlGgVTegDaBZHQJlNjNZ/0/Z1fZQoaAZoCWgPQwhXsmMjEANgQJSGlFKUaBVN6ANoFkdAmVMPDYRNAXV9lChoBmgJaA9DCB7gSQuX32FAlIaUUpRoFU3oA2gWR0CZWUvAXVLBdX2UKGgGaAloD0MIUWnEzD5iY0CUhpRSlGgVTegDaBZHQJlgShmGucN1fZQoaAZoCWgPQwi+UMB2MHtjQJSGlFKUaBVN6ANoFkdAmWKYnWrfcnV9lChoBmgJaA9DCIyfxr15TmFAlIaUUpRoFU3oA2gWR0CZeEXIU8FIdX2UKGgGaAloD0MITUnW4ei4SECUhpRSlGgVS9hoFkdAmYSLVe8f3nV9lChoBmgJaA9DCHSXxFkR+V9AlIaUUpRoFU3oA2gWR0CZiAO+ZgG9dX2UKGgGaAloD0MIYwtBDkpSYkCUhpRSlGgVTegDaBZHQJmLEM6RyOt1fZQoaAZoCWgPQwgGED6UaH5fQJSGlFKUaBVN6ANoFkdAmYzemFaje3V9lChoBmgJaA9DCF5m2CjrVyjAlIaUUpRoFU0yAWgWR0CZjZXzUZvUdX2UKGgGaAloD0MIa4Ko+wCvZECUhpRSlGgVTegDaBZHQJmN8j4YaYN1fZQoaAZoCWgPQwiBXyNJEFtgQJSGlFKUaBVN6ANoFkdAmY4BHCoCMnV9lChoBmgJaA9DCF+y8WCLqVhAlIaUUpRoFU3oA2gWR0CZjkS4vvjPdX2UKGgGaAloD0MIU1ipoCKsYECUhpRSlGgVTegDaBZHQJmPUm3OObR1fZQoaAZoCWgPQwidK0oJQcxgQJSGlFKUaBVN6ANoFkdAmY/D2nKnvXV9lChoBmgJaA9DCPm+uFSl1F9AlIaUUpRoFU3oA2gWR0CZktQFcIJJdX2UKGgGaAloD0MIIt+l1CXTLcCUhpRSlGgVTRUBaBZHQJmb7XqZ+hJ1fZQoaAZoCWgPQwi0Hr5MFJdOQJSGlFKUaBVNMAFoFkdAmZya4QSSNnV9lChoBmgJaA9DCGoWaHfI0GJAlIaUUpRoFU3oA2gWR0CZn+7WNFSbdX2UKGgGaAloD0MIy7xV16G4WUCUhpRSlGgVTegDaBZHQJmgXo3aSLZ1fZQoaAZoCWgPQwi8rl+wm5BhQJSGlFKUaBVN6ANoFkdAmaXpiZv1lHV9lChoBmgJaA9DCK3aNSGtEl1AlIaUUpRoFU3oA2gWR0CZrCefZmI1dX2UKGgGaAloD0MIFY21v7NvQcCUhpRSlGgVTQEBaBZHQJmyiy1NQCV1fZQoaAZoCWgPQwhTl4xjJIxcQJSGlFKUaBVN6ANoFkdAmbRmgi/wiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f981571f820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f981571f8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f981571f940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f981571f9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f981571fa60>", "forward": "<function ActorCriticPolicy.forward at 0x7f981571faf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f981571fb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f981571fc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f981571fca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f981571fd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f981571fdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f981571d420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672149479597419043, "learning_rate": 0.0, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0GtLyP5l+6y39os/SBdK43lUc6a2a5MwAAgD8AAIA/Zi7fvDOovD9zgLa9sS6Ovmcmlr0193O9AAAAAAAAAAAAuYe8ZmRGP210az33dAa/ZpAKvUJ3DrkAAAAAAAAAAM18zDxKL6k/nNmqPq1SJb+joCo8iuLsPQAAAAAAAAAAMwbHPNFBjj5lPPC8XmrivsKZgjtO9qA8AAAAAAAAAAAmluk9IBiNP272jD6sJyy/E4g+Pk30IT4AAAAAAAAAAGbepbsFeLE/bOYhvpm7xr6ccdO5mJc4vQAAAAAAAAAAwLIwvsZjYj/s4L09AW0Vvx80pr6FIEM+AAAAAAAAAAAz3jE9pqwkP6lgDjwZvAi/BV9ePe5JKbwAAAAAAAAAAJrHUj7oNM0+7mF/vs1y+r4tVcM9jWBdvgAAAAAAAAAAJlH4PTrgxD4B3au9uir8vpXcCz6/nAy9AAAAAAAAAABmns87J1a0P3NJJD9c0bm9UFrwu43aFL4AAAAAAAAAAI1gjT3gk/8+i7eVPOx0Cr/Bm8Y9TWSJvAAAAAAAAAAAZga5ukn+sj/CbRK+1J4OvxBJ1zpSrAQ9AAAAAAAAAADGN0Y+N38wP3Px+7168RC/fdZ2PnLeMb4AAAAAAAAAABoxSr1xL38+zbV/PkAw575Wlhc++/E7PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8RDGT6OWc0CUhpRSlIwBbJRL34wBdJRHQKzydi5NGmV1fZQoaAZoCWgPQwheEfxvJYlzQJSGlFKUaBVLtmgWR0Cs8pakZaV2dX2UKGgGaAloD0MIxQQ1fAsVTECUhpRSlGgVS4RoFkdArPKwVqN6xHV9lChoBmgJaA9DCFpo5zSLnW5AlIaUUpRoFUvIaBZHQKzzCCbMHKR1fZQoaAZoCWgPQwinWaDdYaVwQJSGlFKUaBVLwWgWR0Cs8+Xnp0OmdX2UKGgGaAloD0MIdAzIXi/ncECUhpRSlGgVS7hoFkdArPRKJCSid3V9lChoBmgJaA9DCB3KUBXTx25AlIaUUpRoFUvMaBZHQKz0TS8an751fZQoaAZoCWgPQwhuGXCWkoxyQJSGlFKUaBVL6WgWR0Cs9JBY/3WXdX2UKGgGaAloD0MIsVOsGgSMc0CUhpRSlGgVS9JoFkdArPS3P1L8JnV9lChoBmgJaA9DCM6JPbTPoXBAlIaUUpRoFUvSaBZHQKz07Prv9cd1fZQoaAZoCWgPQwjgg9curZ9xQJSGlFKUaBVLyWgWR0Cs9RJcxCY1dX2UKGgGaAloD0MIDJOpgtFnc0CUhpRSlGgVS9NoFkdArPUooJAt4HV9lChoBmgJaA9DCLiswmZAy3JAlIaUUpRoFUvMaBZHQKz1K54nndR1fZQoaAZoCWgPQwhdNjrnJ7NxQJSGlFKUaBVL3GgWR0Cs9TXEqDsddX2UKGgGaAloD0MIIO9VK1PCcUCUhpRSlGgVS7RoFkdArPVLGJemenV9lChoBmgJaA9DCNS19j5Vi0JAlIaUUpRoFUuJaBZHQKz1XB55Z8t1fZQoaAZoCWgPQwjY9KCgVJZxQJSGlFKUaBVL2mgWR0Cs9VuTq0MPdX2UKGgGaAloD0MIyqgyjPufcUCUhpRSlGgVS+BoFkdArPVeumrKeXV9lChoBmgJaA9DCLX66qqAX3FAlIaUUpRoFUvaaBZHQKz1hC+lCTl1fZQoaAZoCWgPQwg34PPDSMNyQJSGlFKUaBVLymgWR0Cs/mpTER8MdX2UKGgGaAloD0MIsfojDMPMckCUhpRSlGgVS+JoFkdArP5zN8ma6XV9lChoBmgJaA9DCGoxeJj2f3FAlIaUUpRoFUvCaBZHQKz+6sI3R5V1fZQoaAZoCWgPQwihL739+SVxQJSGlFKUaBVL2GgWR0Cs/x6gM+eOdX2UKGgGaAloD0MILhud8xOfcUCUhpRSlGgVS8xoFkdArP9IAdXDFnV9lChoBmgJaA9DCFUYWwjy429AlIaUUpRoFUvLaBZHQKz/b6rvLHN1fZQoaAZoCWgPQwhsdqT6zlpwQJSGlFKUaBVLxWgWR0Cs/4o2GZeBdX2UKGgGaAloD0MIOPjCZKrVUkCUhpRSlGgVS4BoFkdArP+Z1mrbQHV9lChoBmgJaA9DCB6KAn1itXFAlIaUUpRoFUu8aBZHQKz/rwT/Q0J1fZQoaAZoCWgPQwg2A1yQbZRwQJSGlFKUaBVL22gWR0Cs/+cLa24NdX2UKGgGaAloD0MIX3089B1kc0CUhpRSlGgVS8ZoFkdArP/90PpY93V9lChoBmgJaA9DCBPyQc8mdXBAlIaUUpRoFUvNaBZHQKz//bILgGd1fZQoaAZoCWgPQwh2UInrWBRzQJSGlFKUaBVL22gWR0CtAAA+IMz/dX2UKGgGaAloD0MIiZl9HuMNcECUhpRSlGgVS7ZoFkdArQAHYYixFHV9lChoBmgJaA9DCCzzVl2H/3BAlIaUUpRoFUviaBZHQK0AGJpnHvN1fZQoaAZoCWgPQwj99QoL7hNzQJSGlFKUaBVLuWgWR0CtACxXOnl5dX2UKGgGaAloD0MIaTum7oqcc0CUhpRSlGgVS+RoFkdArQA70L+glHV9lChoBmgJaA9DCNo4Yi0+2nJAlIaUUpRoFU0qAWgWR0CtANsTnJT3dX2UKGgGaAloD0MImus00tK1cECUhpRSlGgVS79oFkdArQDiZ2IO6XV9lChoBmgJaA9DCF99PPRdGnNAlIaUUpRoFUviaBZHQK0BAfHxSYR1fZQoaAZoCWgPQwgHzhlR2u9vQJSGlFKUaBVLy2gWR0CtAR8vugHvdX2UKGgGaAloD0MIgCpu3OJyc0CUhpRSlGgVS7loFkdArQEyYsunM3V9lChoBmgJaA9DCIuNeR1xqkZAlIaUUpRoFUuLaBZHQK0BNXDFZPl1fZQoaAZoCWgPQwibyTfbHGxzQJSGlFKUaBVLzWgWR0CtAUbzK9wndX2UKGgGaAloD0MIptHkYoxZckCUhpRSlGgVS8ZoFkdArQFczsQd0nV9lChoBmgJaA9DCOc6jbSU7nBAlIaUUpRoFUvOaBZHQK0BgmeDnNh1fZQoaAZoCWgPQwhjCACOffFzQJSGlFKUaBVLvWgWR0CtAaRXOnl5dX2UKGgGaAloD0MIzXNEvkvNbkCUhpRSlGgVS8FoFkdArQGuS2Yv4HV9lChoBmgJaA9DCK93f7wXJ3FAlIaUUpRoFUvBaBZHQK0Byfra/RF1fZQoaAZoCWgPQwjIJCNnob1xQJSGlFKUaBVLu2gWR0CtAdKx1PnCdX2UKGgGaAloD0MI9HAC06mccECUhpRSlGgVS+hoFkdArQHyo0hvBXV9lChoBmgJaA9DCOtWz0nvL0NAlIaUUpRoFUt7aBZHQK0CHHWBjF11fZQoaAZoCWgPQwhAFTducTN0QJSGlFKUaBVL+GgWR0CtAje36Q/5dX2UKGgGaAloD0MIrDsW26SwcECUhpRSlGgVS+xoFkdArQMctf5ULnV9lChoBmgJaA9DCAe0dAUb+HBAlIaUUpRoFUvpaBZHQK0DHQ/oq1B1fZQoaAZoCWgPQwjieD4D6kxzQJSGlFKUaBVL02gWR0CtAyrqdH2AdX2UKGgGaAloD0MI+S06WeoWckCUhpRSlGgVS9doFkdArQNLvXsgMnV9lChoBmgJaA9DCH3nFyUoGXJAlIaUUpRoFUvQaBZHQK0DUYMvysl1fZQoaAZoCWgPQwiTqu0mOCVzQJSGlFKUaBVL2GgWR0CtA1HKOktVdX2UKGgGaAloD0MIg2xZvi6Fc0CUhpRSlGgVS85oFkdArQNk89wFT3V9lChoBmgJaA9DCNWuCWmNxHFAlIaUUpRoFUu3aBZHQK0Dnp6hQFd1fZQoaAZoCWgPQwgjEoWWNQhxQJSGlFKUaBVLz2gWR0CtA7KuB+WodX2UKGgGaAloD0MIFqHYChr2cECUhpRSlGgVS85oFkdArQO7FKkEcXV9lChoBmgJaA9DCKZDp+edynNAlIaUUpRoFUvAaBZHQK0Dv2OAAhl1fZQoaAZoCWgPQwiXj6SkR8dyQJSGlFKUaBVL6mgWR0CtA9CcG1QZdX2UKGgGaAloD0MI2ERmLnBcc0CUhpRSlGgVS7NoFkdArQQDO9nK4nV9lChoBmgJaA9DCFQbnIi+bXBAlIaUUpRoFUvaaBZHQK0EGvMbFS91fZQoaAZoCWgPQwgwvJLkOXdyQJSGlFKUaBVL12gWR0CtBD1wo9cKdX2UKGgGaAloD0MI0EVDxqOXcUCUhpRSlGgVTbEBaBZHQK0ETTfixV11fZQoaAZoCWgPQwhstBzoIXxxQJSGlFKUaBVLwGgWR0CtBOhi1AqvdX2UKGgGaAloD0MINSTusTQdc0CUhpRSlGgVS8NoFkdArQT89jgAInV9lChoBmgJaA9DCDIDlfGvEnNAlIaUUpRoFUu+aBZHQK0FDpB5X2d1fZQoaAZoCWgPQwhljuVddW9zQJSGlFKUaBVL22gWR0CtBS0tAcDKdX2UKGgGaAloD0MIzR/T2rQXcUCUhpRSlGgVS81oFkdArQU5kupS8HV9lChoBmgJaA9DCOC8OPHVBXJAlIaUUpRoFUvOaBZHQK0FPE8aGYd1fZQoaAZoCWgPQwiCOXr8nk10QJSGlFKUaBVLrWgWR0CtBWpobn5jdX2UKGgGaAloD0MIe6AVGDIYcUCUhpRSlGgVS9xoFkdArQVwBgeA/nV9lChoBmgJaA9DCIEFMGVg/HBAlIaUUpRoFUvAaBZHQK0FeRLbpNd1fZQoaAZoCWgPQwjZtb3d0m5wQJSGlFKUaBVLxmgWR0CtBZHFxXGPdX2UKGgGaAloD0MILLzLRbxRckCUhpRSlGgVS9loFkdArQWhUJfICHV9lChoBmgJaA9DCJfHmpFBkXBAlIaUUpRoFUvkaBZHQK0F1SmZVn51fZQoaAZoCWgPQwj5hOy8zexzQJSGlFKUaBVLxWgWR0CtBddRBNVSdX2UKGgGaAloD0MIVpqUgq5Ic0CUhpRSlGgVS8loFkdArQX3Y4ACGXV9lChoBmgJaA9DCEw1s5YCWkFAlIaUUpRoFUt0aBZHQK0F/b+Lm6p1fZQoaAZoCWgPQwh9PPTdbUNxQJSGlFKUaBVLx2gWR0CtBhLadtl7dX2UKGgGaAloD0MIOx3IeioZc0CUhpRSlGgVS8NoFkdArQYZDkU9IXV9lChoBmgJaA9DCIYBS66iEnFAlIaUUpRoFUu7aBZHQK0G9N/vv0B1fZQoaAZoCWgPQwj9hR4xOilyQJSGlFKUaBVLz2gWR0CtBvniWE9MdX2UKGgGaAloD0MIMSdok0OLc0CUhpRSlGgVS8poFkdArQcLvuw5enV9lChoBmgJaA9DCPRqgNJQ13FAlIaUUpRoFUvLaBZHQK0HGlJpWWB1fZQoaAZoCWgPQwii725lSSZzQJSGlFKUaBVLuWgWR0CtBydCE6DHdX2UKGgGaAloD0MIJZASu7bqcECUhpRSlGgVS+hoFkdArQcm6kIomXV9lChoBmgJaA9DCP8HWKt25m5AlIaUUpRoFUu6aBZHQK0HMiiZfD11fZQoaAZoCWgPQwgUXoJT34VxQJSGlFKUaBVLx2gWR0CtB0D/lyR0dX2UKGgGaAloD0MI9Ib7yG1ccUCUhpRSlGgVS7loFkdArQdH974SH3V9lChoBmgJaA9DCKcC7nm+5XFAlIaUUpRoFUu5aBZHQK0HjR+jM3Z1fZQoaAZoCWgPQwi9OVyrvbVzQJSGlFKUaBVL2GgWR0CtB6BPj4pMdX2UKGgGaAloD0MILSRgdDl9cECUhpRSlGgVS8loFkdArQfRoAXEZXV9lChoBmgJaA9DCGmpvB0hsXNAlIaUUpRoFUvKaBZHQK0H2s7MgU11fZQoaAZoCWgPQwgUBI9vbypwQJSGlFKUaBVLwmgWR0CtB97f51vEdX2UKGgGaAloD0MIuYrFbwoFc0CUhpRSlGgVS79oFkdArQffDP4VRHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTExLWUxY2NmODE2MGUxNT6UjAg8bGFtYmRhPpRLBEMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:32632056484efb239da6716ee5b33e6113492b6bbb45056d35605438ed1b3cd4
3
- size 147146
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55a6bc835462f08365766a39119416fd0f0577a5b4d004fafcffaf0833132c14
3
+ size 146749
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d6b4d80e0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d6b4d8170>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d6b4d8200>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d6b4d8290>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f1d6b4d8320>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f1d6b4d83b0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d6b4d8440>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f1d6b4d84d0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d6b4d8560>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d6b4d85f0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d6b4d8680>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f1d6b51fa20>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,40 +42,40 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1669751037599997058,
51
- "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPrdj4YD6w9Rhm0vezHN76UJti77azcvQAAAAAAAAAAzaJEvB8d6bkSylM87Q5mtoeD2LoAHmq1AACAPwAAgD+g8CU+BZSIu/Y7ETu75jC4XqXPvHDYKroAAIA/AACAPzNnhj7FgN88eAwWuh2KwrhIQ3Q+5lpOOQAAgD8AAIA/MzA3PVzHWbqKsNS6ER23Myao+rqN/vQ5AACAPwAAgD/mUQy+7J+Gu0RFE7w6ifK5gYG2PJVRAjsAAIA/AACAPxrAXD5ndEY/0smzPSNIhL5c6b89uwpivQAAAAAAAAAAzazWusPtYroTOIW7zPk1PGY4HDvATGK7AACAPwAAgD/ttVA+H3J4PzZO2z2B+oa+VF0FPtgFSL4AAAAAAAAAAJrz8TzsiZa5BcDtu0mzJbaYJZC75PKVNQAAgD8AAIA/M7+6vFw7TLpNswy6NT5tto4HBzpK2yE5AACAPwAAgD/NVo88SK2XujRAB7wdjMM7VhmHO7HHqbwAAIA/AACAP8qVX74dNiC9JMs0vDPC/Lp1vIo+1IW3OwAAgD8AAIA/OlAQPkg9vLp0Spm7BZICOTNRFbwQb2Q6AACAPwAAgD8A0Ia9TV5UPrSsjD32npC+SQoovAP0qr0AAAAAAAAAAFOnSD60vaC84h8FPLpiYroLNxC+9/4wuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICTcZVYbxVECUhpRSlIwBbJRN6AOMAXSUR0CX4dP9DQZ5dX2UKGgGaAloD0MIn5JzYg+zWUCUhpRSlGgVTegDaBZHQJfjamoBJZp1fZQoaAZoCWgPQwhWtg95yx1eQJSGlFKUaBVN6ANoFkdAl+g89nscAHV9lChoBmgJaA9DCAEz38FPQknAlIaUUpRoFU0lAWgWR0CX7GNnXd0rdX2UKGgGaAloD0MIoDcVqTAaSECUhpRSlGgVTegDaBZHQJfzhU83dbh1fZQoaAZoCWgPQwiynlp9dd0jQJSGlFKUaBVLyWgWR0CX8+pZwGW2dX2UKGgGaAloD0MINX7hlSSSW0CUhpRSlGgVTegDaBZHQJf4cFr2xpt1fZQoaAZoCWgPQwgr2hznNqpiQJSGlFKUaBVN6ANoFkdAl/khkNFz+3V9lChoBmgJaA9DCLMkQE0tP09AlIaUUpRoFU3oA2gWR0CX/JdZq20BdX2UKGgGaAloD0MI0EICRpcoXkCUhpRSlGgVTegDaBZHQJghWxOclPd1fZQoaAZoCWgPQwiH/DOD+ClgQJSGlFKUaBVN6ANoFkdAmCJPWxyGSXV9lChoBmgJaA9DCGwKZHYWLGJAlIaUUpRoFU3oA2gWR0CYKDKPn0TUdX2UKGgGaAloD0MI5Nu7Bv3ZYUCUhpRSlGgVTegDaBZHQJgzPDwYtQN1fZQoaAZoCWgPQwgIyQImcK5fQJSGlFKUaBVN6ANoFkdAmDVneJpFkXV9lChoBmgJaA9DCLJMv0Q8QGBAlIaUUpRoFU3oA2gWR0CYN1Ixgy/LdX2UKGgGaAloD0MI66pALQb9WECUhpRSlGgVTegDaBZHQJg4bAi3XqZ1fZQoaAZoCWgPQwhgeCXJ8ylkQJSGlFKUaBVN6ANoFkdAmDh+cYqG13V9lChoBmgJaA9DCObLC7APpmRAlIaUUpRoFU3oA2gWR0CYOMchkiD/dX2UKGgGaAloD0MIFQFO72KLYkCUhpRSlGgVTegDaBZHQJg6k3eenQ91fZQoaAZoCWgPQwgVUn5S7XlgQJSGlFKUaBVN6ANoFkdAmETUQbuMM3V9lChoBmgJaA9DCMPvplv2W2FAlIaUUpRoFU0LA2gWR0CYR5cinpB5dX2UKGgGaAloD0MIJAwDllxZT0CUhpRSlGgVTegDaBZHQJhMVuLrHEN1fZQoaAZoCWgPQwiRnEzcKvNTQJSGlFKUaBVN6ANoFkdAmEy5wKjSHHV9lChoBmgJaA9DCDARb51/n15AlIaUUpRoFU3oA2gWR0CYURDej2zwdX2UKGgGaAloD0MI+x711yuFUkCUhpRSlGgVTegDaBZHQJhRt+NLlFN1fZQoaAZoCWgPQwgTueAM/ro+wJSGlFKUaBVLzWgWR0CYUbmwqy4XdX2UKGgGaAloD0MIQwBw7NmzJUCUhpRSlGgVS+loFkdAmFWQKfFrEnV9lChoBmgJaA9DCHMPCd/7HWhAlIaUUpRoFU3lAmgWR0CYVqw4KhL5dX2UKGgGaAloD0MIZmZmZmbiPkCUhpRSlGgVS8JoFkdAmG+bdrO7hHV9lChoBmgJaA9DCI+pu7ILqltAlIaUUpRoFU3oA2gWR0CYdC0cOskqdX2UKGgGaAloD0MIIy4AjVJFYECUhpRSlGgVTegDaBZHQJh0xNATqSp1fZQoaAZoCWgPQwgIBhA+lE5dQJSGlFKUaBVN6ANoFkdAmIQxBAv+O3V9lChoBmgJaA9DCEbPLXQlk1tAlIaUUpRoFU3oA2gWR0CYhmx//echdX2UKGgGaAloD0MIC12JQPX5YkCUhpRSlGgVTegDaBZHQJiIbkcS5Ah1fZQoaAZoCWgPQwh/hjdr8D1gQJSGlFKUaBVN6ANoFkdAmImn05EMLHV9lChoBmgJaA9DCF4QkZp2AWFAlIaUUpRoFU3oA2gWR0CYibmhufmLdX2UKGgGaAloD0MIdoh/2NJAXkCUhpRSlGgVTegDaBZHQJiKBEw35vd1fZQoaAZoCWgPQwg/kSdJ11taQJSGlFKUaBVN6ANoFkdAmIvY2jwhGHV9lChoBmgJaA9DCHxCdt7GBhvAlIaUUpRoFUu0aBZHQJiPhwrDqGF1fZQoaAZoCWgPQwhTsMbZdNxiQJSGlFKUaBVN6ANoFkdAmJ+mUjcEeXV9lChoBmgJaA9DCKD83TtqcmFAlIaUUpRoFU3oA2gWR0CYoDVM23rldX2UKGgGaAloD0MIJXhDGhXCY0CUhpRSlGgVTegDaBZHQJiljohY/3Z1fZQoaAZoCWgPQwj9hokGKa5eQJSGlFKUaBVN6ANoFkdAmKZbLdN34nV9lChoBmgJaA9DCKfn3VhQxlVAlIaUUpRoFU3oA2gWR0CYq2YlpoK2dX2UKGgGaAloD0MIwjQMHxGdWECUhpRSlGgVTegDaBZHQJis8Nwzch11fZQoaAZoCWgPQwhLkXwlkHVTQJSGlFKUaBVN6ANoFkdAmMeXoX9BKXV9lChoBmgJaA9DCPYLdsO2eFJAlIaUUpRoFUvtaBZHQJjJz/4qPOp1fZQoaAZoCWgPQwiLcf4mlBRjQJSGlFKUaBVN6ANoFkdAmMyDOX3QD3V9lChoBmgJaA9DCC15PC0/kFRAlIaUUpRoFU3oA2gWR0CYzR0WdmQKdX2UKGgGaAloD0MIR1m/mZgKOMCUhpRSlGgVS9doFkdAmNx1nAZbZHV9lChoBmgJaA9DCHbgnBGlIWBAlIaUUpRoFU3oA2gWR0CY4AK/mDDkdX2UKGgGaAloD0MIcM0d/S/3U0CUhpRSlGgVTegDaBZHQJjiMj3VTaV1fZQoaAZoCWgPQwgAVkeO9DJhQJSGlFKUaBVN6ANoFkdAmONwPmPo3nV9lChoBmgJaA9DCI8c6QyMpGBAlIaUUpRoFU3oA2gWR0CY44PVurIYdX2UKGgGaAloD0MIhKCjVS01VkCUhpRSlGgVTegDaBZHQJjj1JDmbLF1fZQoaAZoCWgPQwh5XFSLiJ1XQJSGlFKUaBVN6ANoFkdAmOWrsKLKm3V9lChoBmgJaA9DCJRPj20ZTFdAlIaUUpRoFU3oA2gWR0CY6Y8FpwjudX2UKGgGaAloD0MIouwt5XwjWUCUhpRSlGgVTegDaBZHQJj4vxmTTv11fZQoaAZoCWgPQwgEPdS2YapaQJSGlFKUaBVN6ANoFkdAmPkv/FR51XV9lChoBmgJaA9DCKg4DrxawF1AlIaUUpRoFU3oA2gWR0CY/ydmxt52dX2UKGgGaAloD0MIhXtl3qp9W0CUhpRSlGgVTegDaBZHQJkEU/6frbB1fZQoaAZoCWgPQwh8tg4O9pNcQJSGlFKUaBVN6ANoFkdAmQWrb+Lm63V9lChoBmgJaA9DCAYN/RNcy2FAlIaUUpRoFU3oA2gWR0CZDJ2vjfeldX2UKGgGaAloD0MInUfF/x1CZECUhpRSlGgVTegDaBZHQJkh/4sVclh1fZQoaAZoCWgPQwjSNv5EZQVWQJSGlFKUaBVN6ANoFkdAmSSp17pmmXV9lChoBmgJaA9DCAVSYtd2GGBAlIaUUpRoFU3oA2gWR0CZNHnXumaZdX2UKGgGaAloD0MIMjogCfuvV0CUhpRSlGgVTegDaBZHQJk3qe4Cp3p1fZQoaAZoCWgPQwgFhqxu9cxjQJSGlFKUaBVN6ANoFkdAmTmeGoJiRXV9lChoBmgJaA9DCA6D+Stk8FxAlIaUUpRoFU3oA2gWR0CZOrqDsdDIdX2UKGgGaAloD0MIshAdAkfWYECUhpRSlGgVTegDaBZHQJk6zQTmGM51fZQoaAZoCWgPQwhEwCFUqYZeQJSGlFKUaBVN6ANoFkdAmTsWhh6SknV9lChoBmgJaA9DCGKDhZM0amdAlIaUUpRoFU0XAmgWR0CZPE1L8JlbdX2UKGgGaAloD0MIFvw2xHg1ZkCUhpRSlGgVTegDaBZHQJk8x79hqj91fZQoaAZoCWgPQwg/OQoQBQJeQJSGlFKUaBVN6ANoFkdAmT/o24uscXV9lChoBmgJaA9DCFuWr8vwz2NAlIaUUpRoFU3oA2gWR0CZTSUTL4etdX2UKGgGaAloD0MIAp1Jm6p+XUCUhpRSlGgVTegDaBZHQJlNjNZ/0/Z1fZQoaAZoCWgPQwhXsmMjEANgQJSGlFKUaBVN6ANoFkdAmVMPDYRNAXV9lChoBmgJaA9DCB7gSQuX32FAlIaUUpRoFU3oA2gWR0CZWUvAXVLBdX2UKGgGaAloD0MIUWnEzD5iY0CUhpRSlGgVTegDaBZHQJlgShmGucN1fZQoaAZoCWgPQwi+UMB2MHtjQJSGlFKUaBVN6ANoFkdAmWKYnWrfcnV9lChoBmgJaA9DCIyfxr15TmFAlIaUUpRoFU3oA2gWR0CZeEXIU8FIdX2UKGgGaAloD0MITUnW4ei4SECUhpRSlGgVS9hoFkdAmYSLVe8f3nV9lChoBmgJaA9DCHSXxFkR+V9AlIaUUpRoFU3oA2gWR0CZiAO+ZgG9dX2UKGgGaAloD0MIYwtBDkpSYkCUhpRSlGgVTegDaBZHQJmLEM6RyOt1fZQoaAZoCWgPQwgGED6UaH5fQJSGlFKUaBVN6ANoFkdAmYzemFaje3V9lChoBmgJaA9DCF5m2CjrVyjAlIaUUpRoFU0yAWgWR0CZjZXzUZvUdX2UKGgGaAloD0MIa4Ko+wCvZECUhpRSlGgVTegDaBZHQJmN8j4YaYN1fZQoaAZoCWgPQwiBXyNJEFtgQJSGlFKUaBVN6ANoFkdAmY4BHCoCMnV9lChoBmgJaA9DCF+y8WCLqVhAlIaUUpRoFU3oA2gWR0CZjkS4vvjPdX2UKGgGaAloD0MIU1ipoCKsYECUhpRSlGgVTegDaBZHQJmPUm3OObR1fZQoaAZoCWgPQwidK0oJQcxgQJSGlFKUaBVN6ANoFkdAmY/D2nKnvXV9lChoBmgJaA9DCPm+uFSl1F9AlIaUUpRoFU3oA2gWR0CZktQFcIJJdX2UKGgGaAloD0MIIt+l1CXTLcCUhpRSlGgVTRUBaBZHQJmb7XqZ+hJ1fZQoaAZoCWgPQwi0Hr5MFJdOQJSGlFKUaBVNMAFoFkdAmZya4QSSNnV9lChoBmgJaA9DCGoWaHfI0GJAlIaUUpRoFU3oA2gWR0CZn+7WNFSbdX2UKGgGaAloD0MIy7xV16G4WUCUhpRSlGgVTegDaBZHQJmgXo3aSLZ1fZQoaAZoCWgPQwi8rl+wm5BhQJSGlFKUaBVN6ANoFkdAmaXpiZv1lHV9lChoBmgJaA9DCK3aNSGtEl1AlIaUUpRoFU3oA2gWR0CZrCefZmI1dX2UKGgGaAloD0MIFY21v7NvQcCUhpRSlGgVTQEBaBZHQJmyiy1NQCV1fZQoaAZoCWgPQwhTl4xjJIxcQJSGlFKUaBVN6ANoFkdAmbRmgi/wiXVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,7 +86,7 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f981571f820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f981571f8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f981571f940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f981571f9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f981571fa60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f981571faf0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f981571fb80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f981571fc10>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f981571fca0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f981571fd30>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f981571fdc0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f981571d420>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 5013504,
46
+ "_total_timesteps": 5000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1672149479597419043,
51
+ "learning_rate": 0.0,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0GtLyP5l+6y39os/SBdK43lUc6a2a5MwAAgD8AAIA/Zi7fvDOovD9zgLa9sS6Ovmcmlr0193O9AAAAAAAAAAAAuYe8ZmRGP210az33dAa/ZpAKvUJ3DrkAAAAAAAAAAM18zDxKL6k/nNmqPq1SJb+joCo8iuLsPQAAAAAAAAAAMwbHPNFBjj5lPPC8XmrivsKZgjtO9qA8AAAAAAAAAAAmluk9IBiNP272jD6sJyy/E4g+Pk30IT4AAAAAAAAAAGbepbsFeLE/bOYhvpm7xr6ccdO5mJc4vQAAAAAAAAAAwLIwvsZjYj/s4L09AW0Vvx80pr6FIEM+AAAAAAAAAAAz3jE9pqwkP6lgDjwZvAi/BV9ePe5JKbwAAAAAAAAAAJrHUj7oNM0+7mF/vs1y+r4tVcM9jWBdvgAAAAAAAAAAJlH4PTrgxD4B3au9uir8vpXcCz6/nAy9AAAAAAAAAABmns87J1a0P3NJJD9c0bm9UFrwu43aFL4AAAAAAAAAAI1gjT3gk/8+i7eVPOx0Cr/Bm8Y9TWSJvAAAAAAAAAAAZga5ukn+sj/CbRK+1J4OvxBJ1zpSrAQ9AAAAAAAAAADGN0Y+N38wP3Px+7168RC/fdZ2PnLeMb4AAAAAAAAAABoxSr1xL38+zbV/PkAw575Wlhc++/E7PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8RDGT6OWc0CUhpRSlIwBbJRL34wBdJRHQKzydi5NGmV1fZQoaAZoCWgPQwheEfxvJYlzQJSGlFKUaBVLtmgWR0Cs8pakZaV2dX2UKGgGaAloD0MIxQQ1fAsVTECUhpRSlGgVS4RoFkdArPKwVqN6xHV9lChoBmgJaA9DCFpo5zSLnW5AlIaUUpRoFUvIaBZHQKzzCCbMHKR1fZQoaAZoCWgPQwinWaDdYaVwQJSGlFKUaBVLwWgWR0Cs8+Xnp0OmdX2UKGgGaAloD0MIdAzIXi/ncECUhpRSlGgVS7hoFkdArPRKJCSid3V9lChoBmgJaA9DCB3KUBXTx25AlIaUUpRoFUvMaBZHQKz0TS8an751fZQoaAZoCWgPQwhuGXCWkoxyQJSGlFKUaBVL6WgWR0Cs9JBY/3WXdX2UKGgGaAloD0MIsVOsGgSMc0CUhpRSlGgVS9JoFkdArPS3P1L8JnV9lChoBmgJaA9DCM6JPbTPoXBAlIaUUpRoFUvSaBZHQKz07Prv9cd1fZQoaAZoCWgPQwjgg9curZ9xQJSGlFKUaBVLyWgWR0Cs9RJcxCY1dX2UKGgGaAloD0MIDJOpgtFnc0CUhpRSlGgVS9NoFkdArPUooJAt4HV9lChoBmgJaA9DCLiswmZAy3JAlIaUUpRoFUvMaBZHQKz1K54nndR1fZQoaAZoCWgPQwhdNjrnJ7NxQJSGlFKUaBVL3GgWR0Cs9TXEqDsddX2UKGgGaAloD0MIIO9VK1PCcUCUhpRSlGgVS7RoFkdArPVLGJemenV9lChoBmgJaA9DCNS19j5Vi0JAlIaUUpRoFUuJaBZHQKz1XB55Z8t1fZQoaAZoCWgPQwjY9KCgVJZxQJSGlFKUaBVL2mgWR0Cs9VuTq0MPdX2UKGgGaAloD0MIyqgyjPufcUCUhpRSlGgVS+BoFkdArPVeumrKeXV9lChoBmgJaA9DCLX66qqAX3FAlIaUUpRoFUvaaBZHQKz1hC+lCTl1fZQoaAZoCWgPQwg34PPDSMNyQJSGlFKUaBVLymgWR0Cs/mpTER8MdX2UKGgGaAloD0MIsfojDMPMckCUhpRSlGgVS+JoFkdArP5zN8ma6XV9lChoBmgJaA9DCGoxeJj2f3FAlIaUUpRoFUvCaBZHQKz+6sI3R5V1fZQoaAZoCWgPQwihL739+SVxQJSGlFKUaBVL2GgWR0Cs/x6gM+eOdX2UKGgGaAloD0MILhud8xOfcUCUhpRSlGgVS8xoFkdArP9IAdXDFnV9lChoBmgJaA9DCFUYWwjy429AlIaUUpRoFUvLaBZHQKz/b6rvLHN1fZQoaAZoCWgPQwhsdqT6zlpwQJSGlFKUaBVLxWgWR0Cs/4o2GZeBdX2UKGgGaAloD0MIOPjCZKrVUkCUhpRSlGgVS4BoFkdArP+Z1mrbQHV9lChoBmgJaA9DCB6KAn1itXFAlIaUUpRoFUu8aBZHQKz/rwT/Q0J1fZQoaAZoCWgPQwg2A1yQbZRwQJSGlFKUaBVL22gWR0Cs/+cLa24NdX2UKGgGaAloD0MIX3089B1kc0CUhpRSlGgVS8ZoFkdArP/90PpY93V9lChoBmgJaA9DCBPyQc8mdXBAlIaUUpRoFUvNaBZHQKz//bILgGd1fZQoaAZoCWgPQwh2UInrWBRzQJSGlFKUaBVL22gWR0CtAAA+IMz/dX2UKGgGaAloD0MIiZl9HuMNcECUhpRSlGgVS7ZoFkdArQAHYYixFHV9lChoBmgJaA9DCCzzVl2H/3BAlIaUUpRoFUviaBZHQK0AGJpnHvN1fZQoaAZoCWgPQwj99QoL7hNzQJSGlFKUaBVLuWgWR0CtACxXOnl5dX2UKGgGaAloD0MIaTum7oqcc0CUhpRSlGgVS+RoFkdArQA70L+glHV9lChoBmgJaA9DCNo4Yi0+2nJAlIaUUpRoFU0qAWgWR0CtANsTnJT3dX2UKGgGaAloD0MImus00tK1cECUhpRSlGgVS79oFkdArQDiZ2IO6XV9lChoBmgJaA9DCF99PPRdGnNAlIaUUpRoFUviaBZHQK0BAfHxSYR1fZQoaAZoCWgPQwgHzhlR2u9vQJSGlFKUaBVLy2gWR0CtAR8vugHvdX2UKGgGaAloD0MIgCpu3OJyc0CUhpRSlGgVS7loFkdArQEyYsunM3V9lChoBmgJaA9DCIuNeR1xqkZAlIaUUpRoFUuLaBZHQK0BNXDFZPl1fZQoaAZoCWgPQwibyTfbHGxzQJSGlFKUaBVLzWgWR0CtAUbzK9wndX2UKGgGaAloD0MIptHkYoxZckCUhpRSlGgVS8ZoFkdArQFczsQd0nV9lChoBmgJaA9DCOc6jbSU7nBAlIaUUpRoFUvOaBZHQK0BgmeDnNh1fZQoaAZoCWgPQwhjCACOffFzQJSGlFKUaBVLvWgWR0CtAaRXOnl5dX2UKGgGaAloD0MIzXNEvkvNbkCUhpRSlGgVS8FoFkdArQGuS2Yv4HV9lChoBmgJaA9DCK93f7wXJ3FAlIaUUpRoFUvBaBZHQK0Byfra/RF1fZQoaAZoCWgPQwjIJCNnob1xQJSGlFKUaBVLu2gWR0CtAdKx1PnCdX2UKGgGaAloD0MI9HAC06mccECUhpRSlGgVS+hoFkdArQHyo0hvBXV9lChoBmgJaA9DCOtWz0nvL0NAlIaUUpRoFUt7aBZHQK0CHHWBjF11fZQoaAZoCWgPQwhAFTducTN0QJSGlFKUaBVL+GgWR0CtAje36Q/5dX2UKGgGaAloD0MIrDsW26SwcECUhpRSlGgVS+xoFkdArQMctf5ULnV9lChoBmgJaA9DCAe0dAUb+HBAlIaUUpRoFUvpaBZHQK0DHQ/oq1B1fZQoaAZoCWgPQwjieD4D6kxzQJSGlFKUaBVL02gWR0CtAyrqdH2AdX2UKGgGaAloD0MI+S06WeoWckCUhpRSlGgVS9doFkdArQNLvXsgMnV9lChoBmgJaA9DCH3nFyUoGXJAlIaUUpRoFUvQaBZHQK0DUYMvysl1fZQoaAZoCWgPQwiTqu0mOCVzQJSGlFKUaBVL2GgWR0CtA1HKOktVdX2UKGgGaAloD0MIg2xZvi6Fc0CUhpRSlGgVS85oFkdArQNk89wFT3V9lChoBmgJaA9DCNWuCWmNxHFAlIaUUpRoFUu3aBZHQK0Dnp6hQFd1fZQoaAZoCWgPQwgjEoWWNQhxQJSGlFKUaBVLz2gWR0CtA7KuB+WodX2UKGgGaAloD0MIFqHYChr2cECUhpRSlGgVS85oFkdArQO7FKkEcXV9lChoBmgJaA9DCKZDp+edynNAlIaUUpRoFUvAaBZHQK0Dv2OAAhl1fZQoaAZoCWgPQwiXj6SkR8dyQJSGlFKUaBVL6mgWR0CtA9CcG1QZdX2UKGgGaAloD0MI2ERmLnBcc0CUhpRSlGgVS7NoFkdArQQDO9nK4nV9lChoBmgJaA9DCFQbnIi+bXBAlIaUUpRoFUvaaBZHQK0EGvMbFS91fZQoaAZoCWgPQwgwvJLkOXdyQJSGlFKUaBVL12gWR0CtBD1wo9cKdX2UKGgGaAloD0MI0EVDxqOXcUCUhpRSlGgVTbEBaBZHQK0ETTfixV11fZQoaAZoCWgPQwhstBzoIXxxQJSGlFKUaBVLwGgWR0CtBOhi1AqvdX2UKGgGaAloD0MINSTusTQdc0CUhpRSlGgVS8NoFkdArQT89jgAInV9lChoBmgJaA9DCDIDlfGvEnNAlIaUUpRoFUu+aBZHQK0FDpB5X2d1fZQoaAZoCWgPQwhljuVddW9zQJSGlFKUaBVL22gWR0CtBS0tAcDKdX2UKGgGaAloD0MIzR/T2rQXcUCUhpRSlGgVS81oFkdArQU5kupS8HV9lChoBmgJaA9DCOC8OPHVBXJAlIaUUpRoFUvOaBZHQK0FPE8aGYd1fZQoaAZoCWgPQwiCOXr8nk10QJSGlFKUaBVLrWgWR0CtBWpobn5jdX2UKGgGaAloD0MIe6AVGDIYcUCUhpRSlGgVS9xoFkdArQVwBgeA/nV9lChoBmgJaA9DCIEFMGVg/HBAlIaUUpRoFUvAaBZHQK0FeRLbpNd1fZQoaAZoCWgPQwjZtb3d0m5wQJSGlFKUaBVLxmgWR0CtBZHFxXGPdX2UKGgGaAloD0MILLzLRbxRckCUhpRSlGgVS9loFkdArQWhUJfICHV9lChoBmgJaA9DCJfHmpFBkXBAlIaUUpRoFUvkaBZHQK0F1SmZVn51fZQoaAZoCWgPQwj5hOy8zexzQJSGlFKUaBVLxWgWR0CtBddRBNVSdX2UKGgGaAloD0MIVpqUgq5Ic0CUhpRSlGgVS8loFkdArQX3Y4ACGXV9lChoBmgJaA9DCEw1s5YCWkFAlIaUUpRoFUt0aBZHQK0F/b+Lm6p1fZQoaAZoCWgPQwh9PPTdbUNxQJSGlFKUaBVLx2gWR0CtBhLadtl7dX2UKGgGaAloD0MIOx3IeioZc0CUhpRSlGgVS8NoFkdArQYZDkU9IXV9lChoBmgJaA9DCIYBS66iEnFAlIaUUpRoFUu7aBZHQK0G9N/vv0B1fZQoaAZoCWgPQwj9hR4xOilyQJSGlFKUaBVLz2gWR0CtBvniWE9MdX2UKGgGaAloD0MIMSdok0OLc0CUhpRSlGgVS8poFkdArQcLvuw5enV9lChoBmgJaA9DCPRqgNJQ13FAlIaUUpRoFUvLaBZHQK0HGlJpWWB1fZQoaAZoCWgPQwii725lSSZzQJSGlFKUaBVLuWgWR0CtBydCE6DHdX2UKGgGaAloD0MIJZASu7bqcECUhpRSlGgVS+hoFkdArQcm6kIomXV9lChoBmgJaA9DCP8HWKt25m5AlIaUUpRoFUu6aBZHQK0HMiiZfD11fZQoaAZoCWgPQwgUXoJT34VxQJSGlFKUaBVLx2gWR0CtB0D/lyR0dX2UKGgGaAloD0MI9Ib7yG1ccUCUhpRSlGgVS7loFkdArQdH974SH3V9lChoBmgJaA9DCKcC7nm+5XFAlIaUUpRoFUu5aBZHQK0HjR+jM3Z1fZQoaAZoCWgPQwi9OVyrvbVzQJSGlFKUaBVL2GgWR0CtB6BPj4pMdX2UKGgGaAloD0MILSRgdDl9cECUhpRSlGgVS8loFkdArQfRoAXEZXV9lChoBmgJaA9DCGmpvB0hsXNAlIaUUpRoFUvKaBZHQK0H2s7MgU11fZQoaAZoCWgPQwgUBI9vbypwQJSGlFKUaBVLwmgWR0CtB97f51vEdX2UKGgGaAloD0MIuYrFbwoFc0CUhpRSlGgVS79oFkdArQffDP4VRHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 1224,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTExLWUxY2NmODE2MGUxNT6UjAg8bGFtYmRhPpRLBEMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
  },
91
  "clip_range_vf": null,
92
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:85f4deffd7dbf3468980c7978b4c44c562dd35a4dfd66d560c52095447eaa53e
3
- size 87865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c5509499255ea9d295ead2002e14569d39afca28e5607095e7296fdd69cbb67
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bbcfcb4e6ad804a4b27f2f378b3c17411561d41c9e96020051407766489d767a
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c54c51395187ba143e0eb8764efb51eda806e68ae5f3c5ca2acf1b1e2e51896
3
  size 43201
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
- Python: 3.7.15
3
  Stable-Baselines3: 1.6.2
4
- PyTorch: 1.12.1+cu113
5
  GPU Enabled: True
6
  Numpy: 1.21.6
7
  Gym: 0.21.0
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
  Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
  GPU Enabled: True
6
  Numpy: 1.21.6
7
  Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 185.61796641413116, "std_reward": 31.252502198839515, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-29T20:00:11.272606"}
 
1
+ {"mean_reward": 291.37509429027716, "std_reward": 18.077391468600652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T15:16:55.687303"}