nph4rd commited on
Commit
bb31649
·
verified ·
1 Parent(s): ef78bc3

End of training

Browse files
Files changed (1) hide show
  1. README.md +39 -34
README.md CHANGED
@@ -1,53 +1,58 @@
1
  ---
2
- library_name: transformers
3
- datasets:
4
- - agentsea/wave-ui-25k
5
- language:
6
- - en
 
 
 
7
  ---
8
 
9
- # Paligemma WaveUI
 
10
 
 
 
11
 
12
- Transformers [PaliGemma 3B 448-res weights](https://huggingface.co/google/paligemma-3b-pt-448), fine-tuned on the [WaveUI-25k](https://huggingface.co/datasets/agentsea/wave-ui-25k) dataset for object-detection.
13
 
14
- ## Model Details
15
 
16
- ### Model Description
17
 
18
- This fine-tune was done atop of the [Paligemma 448 Widgetcap](https://huggingface.co/google/paligemma-3b-ft-widgetcap-448) model, using the [WaveUI-25k](https://huggingface.co/datasets/agentsea/wave-ui-25k) dataset, which contains 25k examples of labeled UI elements.
19
 
20
- The fine-tune was done for the object detection task. Specifically, this model aims to perform well at UI element detection, as part of a wider effort to enable our open-source toolkit for building agents at [AgentSea](https://www.agentsea.ai/). However, this release is mainly intended as a proof of concept and more details on this larger effort will be shared soon.
21
 
22
- - **Developed by:** https://agentsea.ai/
23
- - **Language(s) (NLP):** en
24
- - **Finetuned from model:** https://huggingface.co/google/paligemma-3b-ft-widgetcap-448
25
 
26
- ### Demo
27
 
28
- You can find a **demo** for this model [here](https://huggingface.co/spaces/agentsea/paligemma-waveui).
29
 
30
- ## Notes
31
 
32
- - This model was trained only on a subset of the entire WaveUI dataset. We will release a version using the full dataset soon.
33
- - The only task used in the fine-tune was the object detection task, so it might not perform well in other types of tasks.
34
-
35
- ## Usage
 
 
 
 
 
 
 
36
 
37
- To start using this model, run the following:
38
 
39
- ```python
40
- from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
41
 
42
- model = PaliGemmaForConditionalGeneration.from_pretrained("agentsea/paligemma-3b-ft-widgetcap-waveui-448").eval()
43
- processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-448")
44
- ```
45
 
46
- ## Data
47
 
48
- We used the [WaveUI-25k](https://huggingface.co/datasets/agentsea/wave-ui-25k) dataset for this fine-tune. Before using it, we preprocessed the data to use the Paligemma bounding-box format, and we filtered-out non-English examples.
49
-
50
-
51
- ## Evaluation
52
-
53
- We will release a full evaluation report along with the full WebUI dataset. Stay tuned! :)
 
1
  ---
2
+ base_model: google/paligemma-3b-ft-widgetcap-448
3
+ library_name: peft
4
+ license: gemma
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: paligemma-3b-ft-widgetcap-waveui-448
9
+ results: []
10
  ---
11
 
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
 
15
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/kentauros/paligemma-waveui/runs/hfa841vp)
16
+ # paligemma-3b-ft-widgetcap-waveui-448
17
 
18
+ This model is a fine-tuned version of [google/paligemma-3b-ft-widgetcap-448](https://huggingface.co/google/paligemma-3b-ft-widgetcap-448) on an unknown dataset.
19
 
20
+ ## Model description
21
 
22
+ More information needed
23
 
24
+ ## Intended uses & limitations
25
 
26
+ More information needed
27
 
28
+ ## Training and evaluation data
 
 
29
 
30
+ More information needed
31
 
32
+ ## Training procedure
33
 
34
+ ### Training hyperparameters
35
 
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 16
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 2
46
+ - num_epochs: 3
47
 
48
+ ### Training results
49
 
 
 
50
 
 
 
 
51
 
52
+ ### Framework versions
53
 
54
+ - PEFT 0.11.1
55
+ - Transformers 4.43.2
56
+ - Pytorch 2.4.0+cu121
57
+ - Datasets 2.20.0
58
+ - Tokenizers 0.19.1