Upload PPO LunarLander-v2 trained agent
Browse files- README.md +16 -40
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +16 -16
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,45 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': False
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 50000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 128
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'aga3134/ppo-LunarLander-v2'
|
58 |
-
'batch_size': 512
|
59 |
-
'minibatch_size': 128}
|
60 |
-
```
|
61 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 261.01 +/- 21.34
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b97565870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b97565900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b97565990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b97565a20>", "_build": "<function ActorCriticPolicy._build at 0x7f6b97565ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b97565b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b97565bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b97565c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b97565cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b97565d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b97565e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b97565ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b411eb340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686108401775418301, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKC9Dz7sM1Y/xSbcvas5pr5Z2ss88p79vQAAAAAAAAAAmgAdPXsmp7oOK0u6noFHtblnmLm9c2k5AACAPwAAgD/mBKy92IOUPlItWT4VP3a+FzfoPHcYJ7cAAAAAAAAAAA1Stz1s/LA+mvBEvoI1Tr7t+Uu9zt+GPQAAAAAAAAAAzSGXvPbMfrqJsQy56UoJtD5Amjo0TyQ4AACAPwAAgD/WuI0+ySqePo7FS77rMHS+DHEnPdsJxLwAAAAAAAAAAM2qabx7Tqm6IkojNAkIey11QK46uBmoswAAgD8AAIA/Gh+dPY8aTbruyEO490I6slnMhLs2s2Q3AACAPwAAAADAAzy+qUV1vCZgGLyhbmm6iEzqPcUhPDsAAIA/AAAAADouOb6SkD8/bhGVPCBiir5B3J69Vt2KPQAAAAAAAAAAANykO/aIF7q5bj+zF7IvsASn/jrWy8ozAACAPwAAgD+thwc+JC2OP6sQnT7afq6+ZXYkPk7dlD0AAAAAAAAAALPqXj0FvJ+79S2fO+FhWTx/SwC9WyE8PQAAgD8AAIA/c+F0vtM16j501L0+1jU8vkGxHj0Oi+I8AAAAAAAAAAAapog94dCkugaWPbn1crW2GMYkuqb+ITYAAIA/AAAAAJocYb3uo8I+k283PWLaar77xG28fq+xvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHH7nTy8SSMAWyUTW4BjAF0lEdAlCqs67ulXXV9lChoBkdAcYANh3JPqWgHTTYBaAhHQJQq/L8rI5p1fZQoaAZHQHFEHCXQdCFoB01eAWgIR0CUKx/echC/dX2UKGgGR0A8qI7vG6wuaAdNAAFoCEdAlEKOU6gdwXV9lChoBkdAcJ4xOtW+5GgHTWABaAhHQJRC8wrUb1h1fZQoaAZHQHJERuCPIXFoB00tAWgIR0CUQ2gNwzcidX2UKGgGR0Bxtrz3AVO9aAdNKAFoCEdAlEOeMAFPi3V9lChoBkdAcbptiQT24GgHTXQBaAhHQJRDwLjPv8Z1fZQoaAZHQHGEeHrQgLZoB01iAWgIR0CURoNKRMewdX2UKGgGR0BxgQ4lyBClaAdNmAFoCEdAlEa2LDQ7cXV9lChoBkdAcVRZvUBnz2gHTSQBaAhHQJRG0Md92HN1fZQoaAZHQG5/Sj59E1FoB002AWgIR0CUR/tKIznBdX2UKGgGR0BQS0S/TLGJaAdNAgFoCEdAlEhSaAnUlXV9lChoBkdAb4SkzGgi/2gHTQwBaAhHQJRIW1G9YfZ1fZQoaAZHQEOMK9f1HvtoB0vuaAhHQJRIto6CDmN1fZQoaAZHQHCvVyeZof1oB01TAWgIR0CUSnbEgntwdX2UKGgGR0Bw7dZHNHH4aAdNVQFoCEdAlEqhf4REnnV9lChoBkdAQ92N3np0OmgHS/toCEdAlEtbdWQwK3V9lChoBkdAcf4xiG34K2gHTUcBaAhHQJRLvzND+it1fZQoaAZHQHDm2j9GZu1oB01gAWgIR0CUTC/7iyY5dX2UKGgGR0BtvGCXhOxjaAdNMQFoCEdAlEzNTcZccHV9lChoBkdAbu5cmBvrGGgHTTABaAhHQJRNvNjbzsh1fZQoaAZHQHGHywjdHlRoB01EAWgIR0CUTozkIX0odX2UKGgGR0BxZIhMajveaAdNJwFoCEdAlFBpUHY6GXV9lChoBkdAUSJ2Pkq+amgHS/loCEdAlFCmBJ7LMnV9lChoBkdAcX559E1EVmgHTS8BaAhHQJRQ6hWYF7l1fZQoaAZHQDkCy3Td+G5oB0v6aAhHQJRRHgiu+yt1fZQoaAZHQHJtHEIgNgBoB00rAWgIR0CUUfQv6CUYdX2UKGgGR0ByPJu2qkuZaAdNuwFoCEdAlFJTMqz7dnV9lChoBkdAcF+t03fhuWgHTT4BaAhHQJRS3v7WNFV1fZQoaAZHQHFWtAxBVuJoB018AWgIR0CUU3o/iYLLdX2UKGgGR0A5KvR7Z39raAdL+WgIR0CUVApzcRDkdX2UKGgGR0BGNvcBU70WaAdL4GgIR0CUVEuDjBEbdX2UKGgGR0BwwcB91EE1aAdNPAFoCEdAlFU42wV0tHV9lChoBkdAbqwx1PnB+GgHTUYBaAhHQJRVYi2UjcF1fZQoaAZHQHEc9RFZxJdoB01OAWgIR0CUVmEG7jDLdX2UKGgGR0Byur1UVBUraAdNOwFoCEdAlFaCT6i0wHV9lChoBkdAcXOM3qAz6GgHTSsBaAhHQJRXa9Zid8R1fZQoaAZHQG7D79AHE/BoB00kAWgIR0CUV/RYzSCwdX2UKGgGR0BwZqbWmP5paAdNKgFoCEdAlFozu0CzTnV9lChoBkdAcJGbJwKjSGgHTVEBaAhHQJRbfi3ocJd1fZQoaAZHQHIad0zTF2poB01FAWgIR0CUW44Uvf0mdX2UKGgGR0By3D7O3UhFaAdNJwFoCEdAlFwJdjXnQ3V9lChoBkdAb7yqd6LOzWgHTVIBaAhHQJRcRJaq0dB1fZQoaAZHQG4GTWPLgXNoB003AWgIR0CUXVVghKUWdX2UKGgGR0Bwzk3juKGdaAdNJAFoCEdAlF5KF7D2rXV9lChoBkdAcY8eVs1sL2gHTXwBaAhHQJRe2O938oB1fZQoaAZHQHChDa4+bExoB01PAWgIR0CUXvhMJx//dX2UKGgGR0A2DUypJf6XaAdL9WgIR0CUXwYKpkwwdX2UKGgGR0Bv7Zm/WUbDaAdNLgFoCEdAlF/GSlnAZnV9lChoBkdAbgiVY6nzhGgHTUEBaAhHQJRgOiAUcn51fZQoaAZHQHFdwVGkN4JoB02CAWgIR0CUYSfek56udX2UKGgGR0ByXDd69kBkaAdNUwFoCEdAlGIqHO8kEHV9lChoBkdAcE5aYNRWLmgHTTcBaAhHQJRi1lI3BHl1fZQoaAZHQHIRgq7ROUNoB01UAWgIR0CUYzgUUO/ddX2UKGgGR0ByHBlz2exwaAdNEAFoCEdAlGO4xtYSx3V9lChoBkdAQG+nCO3lS2gHTQEBaAhHQJRkUwpON5t1fZQoaAZHQG7dEz41xbVoB00sAWgIR0CUe4ccENe/dX2UKGgGR0Bxv356+nIiaAdNLwFoCEdAlHxhwVCXyHV9lChoBkdAbjoo7V8TjGgHTVIBaAhHQJR9g+TvAoJ1fZQoaAZHQHB3Wd/axotoB005AWgIR0CUfdozN2TxdX2UKGgGR0BwHIwVTJhfaAdNOQFoCEdAlH63VbzK93V9lChoBkdAcN8ezUqhDmgHTT8BaAhHQJR/p09yLht1fZQoaAZHQHC0io4uK4xoB01LAWgIR0CUgRYK6WgOdX2UKGgGR0BvRPUe+23KaAdNcgFoCEdAlIGPStvGZXV9lChoBkdAcmEv3ai9I2gHTXwBaAhHQJSCIS+QEIR1fZQoaAZHQGzkERradtloB01+AWgIR0CUg5dDIBBBdX2UKGgGR0BwLKneizsyaAdNLgFoCEdAlIOr8vVVgnV9lChoBkdAcTBH3lCCz2gHTTEBaAhHQJSEKX2M85l1fZQoaAZHQHC3p5Z8rqdoB02AAWgIR0CUhK1stTUBdX2UKGgGR0Bs1I8U21lYaAdNZAFoCEdAlITQ44p+dHV9lChoBkdAcgKqu8scyWgHTT0BaAhHQJSFrjlxOtZ1fZQoaAZHQGy4jh1klNVoB01aAWgIR0CUhfnpjc2zdX2UKGgGR0BxHKJBPbfxaAdNSgFoCEdAlIdeDJ2dNHV9lChoBkdAcRj5nUUfxWgHTUMBaAhHQJSH5f7aZhN1fZQoaAZHQHFPnWattANoB00oAWgIR0CUiEAeaKDTdX2UKGgGR0By7GT3Zf2LaAdNUAFoCEdAlIlGWhRIjHV9lChoBkdAbDybpeNT+GgHTU0BaAhHQJSKaWMS9M91fZQoaAZHQG/k3EIgNgBoB009AWgIR0CUjDpAlfJFdX2UKGgGR0BvzfqC6H0saAdNSAFoCEdAlI3d12aDw3V9lChoBkdAcIO+jM3ZPGgHTSUBaAhHQJSOB9YwIt11fZQoaAZHQG3SXtjTa0xoB00+AWgIR0CUjxsasIVudX2UKGgGR0BxUNqesgdPaAdNeAFoCEdAlI8vWYnfEXV9lChoBkdAcgSrDIikf2gHTSIBaAhHQJSPVH8TBZZ1fZQoaAZHQHAwgGwA2htoB009AWgIR0CUkDkRzzVddX2UKGgGR0BxP2PCEYfoaAdNRwFoCEdAlJIg/xDst3V9lChoBkdAcB5e3QUpNWgHTVMBaAhHQJSSNTwUg0V1fZQoaAZHQHJ2ix7iQ1doB00sAWgIR0CUkr9a2WpqdX2UKGgGR0BwkN57gKnfaAdNPQFoCEdAlJPiquKXOXV9lChoBkdAclBIgeRxLmgHTTECaAhHQJSUJ1dPci51fZQoaAZHQHJlSAYpDu1oB01MAWgIR0CUlL9Net0WdX2UKGgGR0Bvk2/FirksaAdNOwFoCEdAlJZPdRBNVXV9lChoBkdAcHYFpfx+a2gHTTMBaAhHQJSXwFvAGjd1fZQoaAZHQHFHxqGlANZoB00uAWgIR0CUmP6uGKyfdX2UKGgGR0Br3GpAD7qIaAdNJwFoCEdAlJoySaEzwnV9lChoBkdAbpqF+NLlFWgHTTQBaAhHQJSaew3YL9d1fZQoaAZHQHA4ofnwG4ZoB01WAWgIR0CUmsBwdbPhdX2UKGgGR0BvIj7di2DyaAdNGwFoCEdAlJyrrLQokXV9lChoBkdAb+XuvUz9CWgHTWMBaAhHQJSdYPXkHUt1fZQoaAZHQHBMMcU/OdJoB01YAWgIR0CUnv7ROUMYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff0a06e89d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff0a06e8a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff0a06e8af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff0a06e8b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff0a06e8c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff0a06e8ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff0a06e8d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff0a06e8dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff0a06e8e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff0a06e8ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff0a06e8f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff0a06e9000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff0a06dae80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686906188116021933, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGalqT1sCJ67FPjCPI+XpDyiVts8kVOLvQAAgD8AAIA/ZkQjvMOpWLoloe+61p0UtpyT4DrkfAw6AACAPwAAgD8AbKg9FECIuohn1LrRnfm1L9gDupgc9zkAAIA/AACAP82cJrxcRw26Zem8ury1w7WcJCE7q7LhOQAAgD8AAIA/mgtZvcOBNbo23zY7jYEqNmIjMjpOIFO6AACAPwAAgD8AYGe6FEygukl6HrlRXzW00j3uOa0kNjgAAIA/AACAP21qGz7PQRC8zJkCPCt6Orr54Wq9zpMbuwAAAAAAAIA/Zme1PEjhlzdCoQO6nnsTNlJIAzzI/iE5AACAPwAAgD/NY1+99nwRumsE7bcDnQGz6Nxbug5VCDcAAIA/AACAP2a4MTxIfYK6DyKWOtCwWDa86Ai7y7tUNQAAgD8AAIA/OolyvgbePj+QzM+9r9y9vlY9P769NtA9AAAAAAAAAABmvik94SyjuoY3OTtEvZU24GK0uKL7VLoAAIA/AACAP1owlb2vf0c+Vsx3PuExJb7W03k9k+p8PQAAAAAAAAAA4Ix6PpV8vD4gxFC+j6LBvt+vh7tNsu+8AAAAAAAAAAAzP807iE0NP8WMnL00x7C+PW+2PFr0dTsAAAAAAAAAAACIDDxIb6W6eM8BuML9/rJ0sA+58qcUNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJHzNt65XmMAWyUTegDjAF0lEdAkxXv2K2rn3V9lChoBkdAMNYv38GcF2gHS/VoCEdAkxbmM85jpnV9lChoBkdAZJKAtnPE9GgHTegDaAhHQJMZuZhKDkF1fZQoaAZHQGUokq2BretoB03oA2gIR0CTHqu3MINWdX2UKGgGR0BkbwyKvV3EaAdN6ANoCEdAkx+S8rZrYXV9lChoBkdAYotowEhaDGgHTegDaAhHQJMiWwcHWz51fZQoaAZHQGHf+CbtqpNoB03oA2gIR0CTMq3/giu/dX2UKGgGR0BkTlucc2itaAdN6ANoCEdAkzO7yc0+DHV9lChoBkdAYmI3++/QB2gHTegDaAhHQJM0OZfD1oR1fZQoaAZHQGRfkUTL4etoB03oA2gIR0CTQXb6guh9dX2UKGgGR0Bhp4kVvddnaAdN6ANoCEdAk0l4MWoFV3V9lChoBkdAXnkqmTC+DmgHTegDaAhHQJNJ4awUxmF1fZQoaAZHQGSRWjoIOYpoB03oA2gIR0CTTr3uNPxhdX2UKGgGR0Bj8LsjVx0daAdN6ANoCEdAk1CWsJY1YXV9lChoBkdAY/qvQF9roGgHTegDaAhHQJNlR52Qnx91fZQoaAZHQGaJ3TmW+oNoB03oA2gIR0CTaVT101ZUdX2UKGgGR0Au8SLZSNwSaAdL5mgIR0CTa4F2FFlTdX2UKGgGR0BjV52bG3nZaAdN6ANoCEdAk22a/yoXK3V9lChoBkdAYOY86FM7EGgHTegDaAhHQJNuThBJI2B1fZQoaAZHQGXiqvvBrN5oB03oA2gIR0CTcD/bj94vdX2UKGgGR0BmQU+qzZ6EaAdN6ANoCEdAk3Q9DQZ4wHV9lChoBkdAY4goegctG2gHTegDaAhHQJN06PbO/tZ1fZQoaAZHQGUyGALApKBoB03oA2gIR0CTdzSsKb8WdX2UKGgGR0BhJwO6NEPUaAdN6ANoCEdAk4ovkq+ajXV9lChoBkdAY7pgGbCrLmgHTegDaAhHQJOL0Pd2xIJ1fZQoaAZHQGXDDTSb6P9oB03oA2gIR0CTjIzWPLgXdX2UKGgGR0Be/nTqjaf0aAdN6ANoCEdAk5yBRqGlAXV9lChoBkdAY1IWZ7Xxv2gHTegDaAhHQJOisunMt9R1fZQoaAZHQGROJ6po9LZoB03oA2gIR0CTponFo+OfdX2UKGgGR0BjANsi0OVgaAdN6ANoCEdAk6f2UwBYFXV9lChoBkdAZ0SpqASWaGgHTegDaAhHQJO8NJkGzKN1fZQoaAZHQGUW3rleWv9oB03oA2gIR0CTwsgq3EyddX2UKGgGR0BiwRmmLtNSaAdN6ANoCEdAk8XhLbpNbnV9lChoBkdAZFonrIHTqmgHTegDaAhHQJPI/ZmI0qJ1fZQoaAZHQFyj/tpmEoRoB03oA2gIR0CTyelU6xPgdX2UKGgGR0Bhq2GKyfL+aAdN6ANoCEdAk8zEVzp5eXV9lChoBkdAZir1Ng0CR2gHTegDaAhHQJPRBGvwEyN1fZQoaAZHQGMZ80Ltu1poB03oA2gIR0CT0cS1E3KkdX2UKGgGR0BoCecz67/XaAdN6ANoCEdAk9QTIikftHV9lChoBkdATl8enyd4FGgHTQIBaAhHQJPYiIcinpB1fZQoaAZHQGh/W9DhLoRoB03oA2gIR0CT4o2IwdsBdX2UKGgGR0Bovmlj3EhraAdN6ANoCEdAk+ONRvWH13V9lChoBkdAZIr8GcFyJmgHTegDaAhHQJPkBZeRgZ11fZQoaAZHQGTEGE4//vRoB03oA2gIR0CT8XSJCSiedX2UKGgGR0BoSWTgVGkOaAdN6ANoCEdAk/fVbeMyanV9lChoBkdAYdtLns9jgGgHTegDaAhHQJP80OhCdBl1fZQoaAZHQGDuiFK02LpoB03oA2gIR0CT/sIAOrhjdX2UKGgGR0BmH+BDohZAaAdN6ANoCEdAlAM2ITGo73V9lChoBkdATHIf8uSOimgHS+toCEdAlBYn4TK1X3V9lChoBkdAY68MpgCwKWgHTegDaAhHQJQZGrU9ZA91fZQoaAZHQGLUdqtYB/9oB03oA2gIR0CUGxx0+1SgdX2UKGgGR0Bio7iGWUr1aAdN6ANoCEdAlB3ZdrwfAHV9lChoBkdAYSYzWwu/UWgHTegDaAhHQJQf+7e2uxN1fZQoaAZHQGeLC4SYgJVoB03oA2gIR0CUJIEXcgyNdX2UKGgGR0BiRQWpIczZaAdN6ANoCEdAlCVJ5JK8MHV9lChoBkdAI+SoGY8dP2gHS91oCEdAlCZu1ndwenV9lChoBkdAXzUffXPJJWgHTegDaAhHQJQnsgLZzxR1fZQoaAZHQGMQU/W1+iJoB03oA2gIR0CULF9gnc+JdX2UKGgGR0BolxLmITGpaAdN6ANoCEdAlDeuX7cfvHV9lChoBkdAZEy20AtFrmgHTegDaAhHQJQ4/lcQiA51fZQoaAZHQF9z+zdDYyxoB03oA2gIR0CUOZLjxTbWdX2UKGgGR0A+nF+NLlFMaAdL92gIR0CUS/mLcbiqdX2UKGgGR0BjRJ5Rjz7NaAdN6ANoCEdAlE7wNkOI7HV9lChoBkdAXf1HOKO1fGgHTegDaAhHQJRSW3BpHqh1fZQoaAZHQGgCu1v2oNxoB03oA2gIR0CUU55qdpZfdX2UKGgGR0BjO8WTHKfWaAdN6ANoCEdAlFaCEcsDn3V9lChoBkdAZatzreIl+mgHTegDaAhHQJRXj1Iy0rt1fZQoaAZHQGNo4ht+CshoB03oA2gIR0CUa95+pfhNdX2UKGgGR0Bl93/NqxkeaAdN6ANoCEdAlG7R7qptJnV9lChoBkdAZT1LX+VC5WgHTegDaAhHQJRxXu4PPLR1fZQoaAZHQGCA+Myad+ZoB03oA2gIR0CUdwsHB1s+dX2UKGgGR0Bjfc1wYLssaAdN6ANoCEdAlHgYFiay8nV9lChoBkdAYSJnGKhtcmgHTegDaAhHQJR5u4Ds+mp1fZQoaAZHQGWhLNnoPkJoB03oA2gIR0CUe4dqL0jDdX2UKGgGR0BiV6Z+hGpdaAdN6ANoCEdAlIGCIP9UCXV9lChoBkdAZZtDIikftGgHTegDaAhHQJSKjGPxQSB1fZQoaAZHQGDzLNwBHTZoB03oA2gIR0CUi5ZxaPjodX2UKGgGR0Bju4SvkiljaAdN6ANoCEdAlJzwizLOiXV9lChoBkdAZvCde6ZpjGgHTegDaAhHQJSgVQP7N0N1fZQoaAZHQGc+QxnFo+RoB03oA2gIR0CUpDDArQPadX2UKGgGR0BibAco6S1WaAdN6ANoCEdAlKW3DFZPmHV9lChoBkdAXwiHfuTibWgHTegDaAhHQJSpHLZBcA11fZQoaAZHQGPDL3sXzlNoB03oA2gIR0CUqtn/DLr5dX2UKGgGR0BiCZ1zQu27aAdN6ANoCEdAlMWzlo11n3V9lChoBkdAYwPpV0cOsmgHTegDaAhHQJTIaYD1XeZ1fZQoaAZHQGLvdI5HVgBoB03oA2gIR0CUypdat9x7dX2UKGgGR0BghQKYzBRAaAdN6ANoCEdAlM8XM2WIGnV9lChoBkdAYyhaX8fmtGgHTegDaAhHQJTP7Vc2R7t1fZQoaAZHQHFXNxdY4hloB03SAmgIR0CU0EDuBtk4dX2UKGgGR0BnSEkKNQ0oaAdN6ANoCEdAlNEKHKwIMXV9lChoBkdAYMCf7rLQomgHTegDaAhHQJTSR6jWTX91fZQoaAZHQGFlR1PnB+FoB03oA2gIR0CU1rpz90ihdX2UKGgGR0BffL8Jlar4aAdN6ANoCEdAlODWuPmxMXV9lChoBkdAbC0UhV2ic2gHTYUCaAhHQJTl0BYFJQN1fZQoaAZHQELn9roGIKtoB00uAWgIR0CU6jroW56MdX2UKGgGR0Bj4FUp/gBLaAdN6ANoCEdAlPTr4N7SiXV9lChoBkdAZZZ46fapP2gHTegDaAhHQJT47qOcUdt1fZQoaAZHQGKa1uivgWJoB03oA2gIR0CU/KYKpkwwdX2UKGgGR0BmOm1Bt1p1aAdN6ANoCEdAlP5kgW8AaXV9lChoBkdAY1S8Emplz2gHTegDaAhHQJUED9tMwlB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54f4c19c6536be17908c0e09db762913d1842af4319f13cbf0c18aadca567a4d
|
3 |
+
size 146751
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff0a06e89d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff0a06e8a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff0a06e8af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff0a06e8b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff0a06e8c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff0a06e8ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff0a06e8d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff0a06e8dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff0a06e8e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff0a06e8ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff0a06e8f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff0a06e9000>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff0a06dae80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1686906188116021933,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGalqT1sCJ67FPjCPI+XpDyiVts8kVOLvQAAgD8AAIA/ZkQjvMOpWLoloe+61p0UtpyT4DrkfAw6AACAPwAAgD8AbKg9FECIuohn1LrRnfm1L9gDupgc9zkAAIA/AACAP82cJrxcRw26Zem8ury1w7WcJCE7q7LhOQAAgD8AAIA/mgtZvcOBNbo23zY7jYEqNmIjMjpOIFO6AACAPwAAgD8AYGe6FEygukl6HrlRXzW00j3uOa0kNjgAAIA/AACAP21qGz7PQRC8zJkCPCt6Orr54Wq9zpMbuwAAAAAAAIA/Zme1PEjhlzdCoQO6nnsTNlJIAzzI/iE5AACAPwAAgD/NY1+99nwRumsE7bcDnQGz6Nxbug5VCDcAAIA/AACAP2a4MTxIfYK6DyKWOtCwWDa86Ai7y7tUNQAAgD8AAIA/OolyvgbePj+QzM+9r9y9vlY9P769NtA9AAAAAAAAAABmvik94SyjuoY3OTtEvZU24GK0uKL7VLoAAIA/AACAP1owlb2vf0c+Vsx3PuExJb7W03k9k+p8PQAAAAAAAAAA4Ix6PpV8vD4gxFC+j6LBvt+vh7tNsu+8AAAAAAAAAAAzP807iE0NP8WMnL00x7C+PW+2PFr0dTsAAAAAAAAAAACIDDxIb6W6eM8BuML9/rJ0sA+58qcUNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJHzNt65XmMAWyUTegDjAF0lEdAkxXv2K2rn3V9lChoBkdAMNYv38GcF2gHS/VoCEdAkxbmM85jpnV9lChoBkdAZJKAtnPE9GgHTegDaAhHQJMZuZhKDkF1fZQoaAZHQGUokq2BretoB03oA2gIR0CTHqu3MINWdX2UKGgGR0BkbwyKvV3EaAdN6ANoCEdAkx+S8rZrYXV9lChoBkdAYotowEhaDGgHTegDaAhHQJMiWwcHWz51fZQoaAZHQGHf+CbtqpNoB03oA2gIR0CTMq3/giu/dX2UKGgGR0BkTlucc2itaAdN6ANoCEdAkzO7yc0+DHV9lChoBkdAYmI3++/QB2gHTegDaAhHQJM0OZfD1oR1fZQoaAZHQGRfkUTL4etoB03oA2gIR0CTQXb6guh9dX2UKGgGR0Bhp4kVvddnaAdN6ANoCEdAk0l4MWoFV3V9lChoBkdAXnkqmTC+DmgHTegDaAhHQJNJ4awUxmF1fZQoaAZHQGSRWjoIOYpoB03oA2gIR0CTTr3uNPxhdX2UKGgGR0Bj8LsjVx0daAdN6ANoCEdAk1CWsJY1YXV9lChoBkdAY/qvQF9roGgHTegDaAhHQJNlR52Qnx91fZQoaAZHQGaJ3TmW+oNoB03oA2gIR0CTaVT101ZUdX2UKGgGR0Au8SLZSNwSaAdL5mgIR0CTa4F2FFlTdX2UKGgGR0BjV52bG3nZaAdN6ANoCEdAk22a/yoXK3V9lChoBkdAYOY86FM7EGgHTegDaAhHQJNuThBJI2B1fZQoaAZHQGXiqvvBrN5oB03oA2gIR0CTcD/bj94vdX2UKGgGR0BmQU+qzZ6EaAdN6ANoCEdAk3Q9DQZ4wHV9lChoBkdAY4goegctG2gHTegDaAhHQJN06PbO/tZ1fZQoaAZHQGUyGALApKBoB03oA2gIR0CTdzSsKb8WdX2UKGgGR0BhJwO6NEPUaAdN6ANoCEdAk4ovkq+ajXV9lChoBkdAY7pgGbCrLmgHTegDaAhHQJOL0Pd2xIJ1fZQoaAZHQGXDDTSb6P9oB03oA2gIR0CTjIzWPLgXdX2UKGgGR0Be/nTqjaf0aAdN6ANoCEdAk5yBRqGlAXV9lChoBkdAY1IWZ7Xxv2gHTegDaAhHQJOisunMt9R1fZQoaAZHQGROJ6po9LZoB03oA2gIR0CTponFo+OfdX2UKGgGR0BjANsi0OVgaAdN6ANoCEdAk6f2UwBYFXV9lChoBkdAZ0SpqASWaGgHTegDaAhHQJO8NJkGzKN1fZQoaAZHQGUW3rleWv9oB03oA2gIR0CTwsgq3EyddX2UKGgGR0BiwRmmLtNSaAdN6ANoCEdAk8XhLbpNbnV9lChoBkdAZFonrIHTqmgHTegDaAhHQJPI/ZmI0qJ1fZQoaAZHQFyj/tpmEoRoB03oA2gIR0CTyelU6xPgdX2UKGgGR0Bhq2GKyfL+aAdN6ANoCEdAk8zEVzp5eXV9lChoBkdAZir1Ng0CR2gHTegDaAhHQJPRBGvwEyN1fZQoaAZHQGMZ80Ltu1poB03oA2gIR0CT0cS1E3KkdX2UKGgGR0BoCecz67/XaAdN6ANoCEdAk9QTIikftHV9lChoBkdATl8enyd4FGgHTQIBaAhHQJPYiIcinpB1fZQoaAZHQGh/W9DhLoRoB03oA2gIR0CT4o2IwdsBdX2UKGgGR0Bovmlj3EhraAdN6ANoCEdAk+ONRvWH13V9lChoBkdAZIr8GcFyJmgHTegDaAhHQJPkBZeRgZ11fZQoaAZHQGTEGE4//vRoB03oA2gIR0CT8XSJCSiedX2UKGgGR0BoSWTgVGkOaAdN6ANoCEdAk/fVbeMyanV9lChoBkdAYdtLns9jgGgHTegDaAhHQJP80OhCdBl1fZQoaAZHQGDuiFK02LpoB03oA2gIR0CT/sIAOrhjdX2UKGgGR0BmH+BDohZAaAdN6ANoCEdAlAM2ITGo73V9lChoBkdATHIf8uSOimgHS+toCEdAlBYn4TK1X3V9lChoBkdAY68MpgCwKWgHTegDaAhHQJQZGrU9ZA91fZQoaAZHQGLUdqtYB/9oB03oA2gIR0CUGxx0+1SgdX2UKGgGR0Bio7iGWUr1aAdN6ANoCEdAlB3ZdrwfAHV9lChoBkdAYSYzWwu/UWgHTegDaAhHQJQf+7e2uxN1fZQoaAZHQGeLC4SYgJVoB03oA2gIR0CUJIEXcgyNdX2UKGgGR0BiRQWpIczZaAdN6ANoCEdAlCVJ5JK8MHV9lChoBkdAI+SoGY8dP2gHS91oCEdAlCZu1ndwenV9lChoBkdAXzUffXPJJWgHTegDaAhHQJQnsgLZzxR1fZQoaAZHQGMQU/W1+iJoB03oA2gIR0CULF9gnc+JdX2UKGgGR0BolxLmITGpaAdN6ANoCEdAlDeuX7cfvHV9lChoBkdAZEy20AtFrmgHTegDaAhHQJQ4/lcQiA51fZQoaAZHQF9z+zdDYyxoB03oA2gIR0CUOZLjxTbWdX2UKGgGR0A+nF+NLlFMaAdL92gIR0CUS/mLcbiqdX2UKGgGR0BjRJ5Rjz7NaAdN6ANoCEdAlE7wNkOI7HV9lChoBkdAXf1HOKO1fGgHTegDaAhHQJRSW3BpHqh1fZQoaAZHQGgCu1v2oNxoB03oA2gIR0CUU55qdpZfdX2UKGgGR0BjO8WTHKfWaAdN6ANoCEdAlFaCEcsDn3V9lChoBkdAZatzreIl+mgHTegDaAhHQJRXj1Iy0rt1fZQoaAZHQGNo4ht+CshoB03oA2gIR0CUa95+pfhNdX2UKGgGR0Bl93/NqxkeaAdN6ANoCEdAlG7R7qptJnV9lChoBkdAZT1LX+VC5WgHTegDaAhHQJRxXu4PPLR1fZQoaAZHQGCA+Myad+ZoB03oA2gIR0CUdwsHB1s+dX2UKGgGR0Bjfc1wYLssaAdN6ANoCEdAlHgYFiay8nV9lChoBkdAYSJnGKhtcmgHTegDaAhHQJR5u4Ds+mp1fZQoaAZHQGWhLNnoPkJoB03oA2gIR0CUe4dqL0jDdX2UKGgGR0BiV6Z+hGpdaAdN6ANoCEdAlIGCIP9UCXV9lChoBkdAZZtDIikftGgHTegDaAhHQJSKjGPxQSB1fZQoaAZHQGDzLNwBHTZoB03oA2gIR0CUi5ZxaPjodX2UKGgGR0Bju4SvkiljaAdN6ANoCEdAlJzwizLOiXV9lChoBkdAZvCde6ZpjGgHTegDaAhHQJSgVQP7N0N1fZQoaAZHQGc+QxnFo+RoB03oA2gIR0CUpDDArQPadX2UKGgGR0BibAco6S1WaAdN6ANoCEdAlKW3DFZPmHV9lChoBkdAXwiHfuTibWgHTegDaAhHQJSpHLZBcA11fZQoaAZHQGPDL3sXzlNoB03oA2gIR0CUqtn/DLr5dX2UKGgGR0BiCZ1zQu27aAdN6ANoCEdAlMWzlo11n3V9lChoBkdAYwPpV0cOsmgHTegDaAhHQJTIaYD1XeZ1fZQoaAZHQGLvdI5HVgBoB03oA2gIR0CUypdat9x7dX2UKGgGR0BghQKYzBRAaAdN6ANoCEdAlM8XM2WIGnV9lChoBkdAYyhaX8fmtGgHTegDaAhHQJTP7Vc2R7t1fZQoaAZHQHFXNxdY4hloB03SAmgIR0CU0EDuBtk4dX2UKGgGR0BnSEkKNQ0oaAdN6ANoCEdAlNEKHKwIMXV9lChoBkdAYMCf7rLQomgHTegDaAhHQJTSR6jWTX91fZQoaAZHQGFlR1PnB+FoB03oA2gIR0CU1rpz90ihdX2UKGgGR0BffL8Jlar4aAdN6ANoCEdAlODWuPmxMXV9lChoBkdAbC0UhV2ic2gHTYUCaAhHQJTl0BYFJQN1fZQoaAZHQELn9roGIKtoB00uAWgIR0CU6jroW56MdX2UKGgGR0Bj4FUp/gBLaAdN6ANoCEdAlPTr4N7SiXV9lChoBkdAZZZ46fapP2gHTegDaAhHQJT47qOcUdt1fZQoaAZHQGKa1uivgWJoB03oA2gIR0CU/KYKpkwwdX2UKGgGR0BmOm1Bt1p1aAdN6ANoCEdAlP5kgW8AaXV9lChoBkdAY1S8Emplz2gHTegDaAhHQJUED9tMwlB1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89fc8b0fd48d5878894ddd3d55a94b81a76a216eda411ab96df918b28438e06d
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2db38b5921d24def4420f0c3c3745c594dce6a495d9170ec5443e3087561a49
|
3 |
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
|
|
1 |
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 261.00558596282156, "std_reward": 21.3413743639891, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-16T09:26:29.852120"}
|