Create pipeline.py
Browse filesThe Flux pipeline for image inpainting using Flux-dev-Depth/Canny
- pipeline.py +1099 -0
pipeline.py
ADDED
@@ -0,0 +1,1099 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
21 |
+
from diffusers.loaders import (
|
22 |
+
FluxLoraLoaderMixin,
|
23 |
+
FromSingleFileMixin,
|
24 |
+
TextualInversionLoaderMixin,
|
25 |
+
)
|
26 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
27 |
+
from diffusers.models.transformers import FluxTransformer2DModel
|
28 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
29 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
30 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
31 |
+
from diffusers.utils import (
|
32 |
+
USE_PEFT_BACKEND,
|
33 |
+
is_torch_xla_available,
|
34 |
+
logging,
|
35 |
+
replace_example_docstring,
|
36 |
+
scale_lora_layers,
|
37 |
+
unscale_lora_layers,
|
38 |
+
)
|
39 |
+
from diffusers.utils.torch_utils import randn_tensor
|
40 |
+
from transformers import (
|
41 |
+
CLIPTextModel,
|
42 |
+
CLIPTokenizer,
|
43 |
+
T5EncoderModel,
|
44 |
+
T5TokenizerFast,
|
45 |
+
)
|
46 |
+
|
47 |
+
if is_torch_xla_available():
|
48 |
+
import torch_xla.core.xla_model as xm
|
49 |
+
|
50 |
+
XLA_AVAILABLE = True
|
51 |
+
else:
|
52 |
+
XLA_AVAILABLE = False
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
EXAMPLE_DOC_STRING = """
|
58 |
+
Examples:
|
59 |
+
```py
|
60 |
+
import torch
|
61 |
+
from diffusers import DiffusionPipeline, FluxTransformer2DModel
|
62 |
+
from transformers import T5EncoderModel
|
63 |
+
from diffusers.utils import load_image
|
64 |
+
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
|
65 |
+
import numpy as np
|
66 |
+
|
67 |
+
pipe = DiffusionPipeline.from_pretrained(
|
68 |
+
"black-forest-labs/FLUX.1-Depth-dev",
|
69 |
+
torch_dtype=torch.bfloat16,
|
70 |
+
custom_pipeline="afromero/pipeline_flux_control_inpaint",
|
71 |
+
)
|
72 |
+
|
73 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
74 |
+
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
|
75 |
+
)
|
76 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(
|
77 |
+
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
|
78 |
+
)
|
79 |
+
pipe.transformer = transformer
|
80 |
+
pipe.text_encoder_2 = text_encoder_2
|
81 |
+
pipe.to("cuda")
|
82 |
+
|
83 |
+
prompt = "The head of a human in a robot body giving a heated speech"
|
84 |
+
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
|
85 |
+
|
86 |
+
head_mask = np.ones_like(control_image)*255
|
87 |
+
head_mask[65:380,300:642] = 0
|
88 |
+
mask_image = Image.fromarray(head_mask)
|
89 |
+
|
90 |
+
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
91 |
+
control_image = processor(control_image)[0].convert("RGB")
|
92 |
+
|
93 |
+
image = pipe(
|
94 |
+
prompt=prompt,
|
95 |
+
control_image=control_image,
|
96 |
+
mask_image=mask_image,
|
97 |
+
strength=0.9,
|
98 |
+
height=1024,
|
99 |
+
width=1024,
|
100 |
+
num_inference_steps=30,
|
101 |
+
guidance_scale=10.0,
|
102 |
+
generator=torch.Generator().manual_seed(42),
|
103 |
+
).images[0]
|
104 |
+
image.save("output.png")
|
105 |
+
|
106 |
+
```
|
107 |
+
"""
|
108 |
+
|
109 |
+
|
110 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
111 |
+
def calculate_shift(
|
112 |
+
image_seq_len,
|
113 |
+
base_seq_len: int = 256,
|
114 |
+
max_seq_len: int = 4096,
|
115 |
+
base_shift: float = 0.5,
|
116 |
+
max_shift: float = 1.16,
|
117 |
+
):
|
118 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
119 |
+
b = base_shift - m * base_seq_len
|
120 |
+
mu = image_seq_len * m + b
|
121 |
+
return mu
|
122 |
+
|
123 |
+
|
124 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
125 |
+
def retrieve_latents(
|
126 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
127 |
+
):
|
128 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
129 |
+
return encoder_output.latent_dist.sample(generator)
|
130 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
131 |
+
return encoder_output.latent_dist.mode()
|
132 |
+
elif hasattr(encoder_output, "latents"):
|
133 |
+
return encoder_output.latents
|
134 |
+
else:
|
135 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
136 |
+
|
137 |
+
|
138 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
139 |
+
def retrieve_timesteps(
|
140 |
+
scheduler,
|
141 |
+
num_inference_steps: Optional[int] = None,
|
142 |
+
device: Optional[Union[str, torch.device]] = None,
|
143 |
+
timesteps: Optional[List[int]] = None,
|
144 |
+
sigmas: Optional[List[float]] = None,
|
145 |
+
**kwargs,
|
146 |
+
):
|
147 |
+
r"""
|
148 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
149 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
scheduler (`SchedulerMixin`):
|
153 |
+
The scheduler to get timesteps from.
|
154 |
+
num_inference_steps (`int`):
|
155 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
156 |
+
must be `None`.
|
157 |
+
device (`str` or `torch.device`, *optional*):
|
158 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
159 |
+
timesteps (`List[int]`, *optional*):
|
160 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
161 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
162 |
+
sigmas (`List[float]`, *optional*):
|
163 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
164 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
168 |
+
second element is the number of inference steps.
|
169 |
+
"""
|
170 |
+
if timesteps is not None and sigmas is not None:
|
171 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
172 |
+
if timesteps is not None:
|
173 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
174 |
+
if not accepts_timesteps:
|
175 |
+
raise ValueError(
|
176 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
177 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
178 |
+
)
|
179 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
180 |
+
timesteps = scheduler.timesteps
|
181 |
+
num_inference_steps = len(timesteps)
|
182 |
+
elif sigmas is not None:
|
183 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
184 |
+
if not accept_sigmas:
|
185 |
+
raise ValueError(
|
186 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
187 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
188 |
+
)
|
189 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
190 |
+
timesteps = scheduler.timesteps
|
191 |
+
num_inference_steps = len(timesteps)
|
192 |
+
else:
|
193 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
194 |
+
timesteps = scheduler.timesteps
|
195 |
+
return timesteps, num_inference_steps
|
196 |
+
|
197 |
+
|
198 |
+
class FluxControlInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
199 |
+
r"""
|
200 |
+
The Flux pipeline for image inpainting using Flux-dev-Depth/Canny.
|
201 |
+
|
202 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
203 |
+
|
204 |
+
Args:
|
205 |
+
transformer ([`FluxTransformer2DModel`]):
|
206 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
207 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
208 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
209 |
+
vae ([`AutoencoderKL`]):
|
210 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
211 |
+
text_encoder ([`CLIPTextModel`]):
|
212 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
213 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
214 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
215 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
216 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
217 |
+
tokenizer (`CLIPTokenizer`):
|
218 |
+
Tokenizer of class
|
219 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
220 |
+
tokenizer_2 (`T5TokenizerFast`):
|
221 |
+
Second Tokenizer of class
|
222 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
223 |
+
"""
|
224 |
+
|
225 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
226 |
+
_optional_components = []
|
227 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
228 |
+
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
232 |
+
vae: AutoencoderKL,
|
233 |
+
text_encoder: CLIPTextModel,
|
234 |
+
tokenizer: CLIPTokenizer,
|
235 |
+
text_encoder_2: T5EncoderModel,
|
236 |
+
tokenizer_2: T5TokenizerFast,
|
237 |
+
transformer: FluxTransformer2DModel,
|
238 |
+
):
|
239 |
+
super().__init__()
|
240 |
+
|
241 |
+
self.register_modules(
|
242 |
+
vae=vae,
|
243 |
+
text_encoder=text_encoder,
|
244 |
+
text_encoder_2=text_encoder_2,
|
245 |
+
tokenizer=tokenizer,
|
246 |
+
tokenizer_2=tokenizer_2,
|
247 |
+
transformer=transformer,
|
248 |
+
scheduler=scheduler,
|
249 |
+
)
|
250 |
+
self.vae_scale_factor = (
|
251 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
252 |
+
)
|
253 |
+
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
254 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
255 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
256 |
+
self.mask_processor = VaeImageProcessor(
|
257 |
+
vae_scale_factor=self.vae_scale_factor * 2,
|
258 |
+
vae_latent_channels=self.vae.config.latent_channels,
|
259 |
+
do_normalize=False,
|
260 |
+
do_binarize=True,
|
261 |
+
do_convert_grayscale=True,
|
262 |
+
)
|
263 |
+
self.tokenizer_max_length = (
|
264 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
265 |
+
)
|
266 |
+
self.default_sample_size = 128
|
267 |
+
|
268 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
|
269 |
+
def _get_t5_prompt_embeds(
|
270 |
+
self,
|
271 |
+
prompt: Union[str, List[str]] = None,
|
272 |
+
num_images_per_prompt: int = 1,
|
273 |
+
max_sequence_length: int = 512,
|
274 |
+
device: Optional[torch.device] = None,
|
275 |
+
dtype: Optional[torch.dtype] = None,
|
276 |
+
):
|
277 |
+
device = device or self._execution_device
|
278 |
+
dtype = dtype or self.text_encoder.dtype
|
279 |
+
|
280 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
281 |
+
batch_size = len(prompt)
|
282 |
+
|
283 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
284 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
|
285 |
+
|
286 |
+
text_inputs = self.tokenizer_2(
|
287 |
+
prompt,
|
288 |
+
padding="max_length",
|
289 |
+
max_length=max_sequence_length,
|
290 |
+
truncation=True,
|
291 |
+
return_length=False,
|
292 |
+
return_overflowing_tokens=False,
|
293 |
+
return_tensors="pt",
|
294 |
+
)
|
295 |
+
text_input_ids = text_inputs.input_ids
|
296 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
297 |
+
|
298 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
299 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
300 |
+
logger.warning(
|
301 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
302 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
303 |
+
)
|
304 |
+
|
305 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
306 |
+
|
307 |
+
dtype = self.text_encoder_2.dtype
|
308 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
309 |
+
|
310 |
+
_, seq_len, _ = prompt_embeds.shape
|
311 |
+
|
312 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
313 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
314 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
315 |
+
|
316 |
+
return prompt_embeds
|
317 |
+
|
318 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
|
319 |
+
def _get_clip_prompt_embeds(
|
320 |
+
self,
|
321 |
+
prompt: Union[str, List[str]],
|
322 |
+
num_images_per_prompt: int = 1,
|
323 |
+
device: Optional[torch.device] = None,
|
324 |
+
):
|
325 |
+
device = device or self._execution_device
|
326 |
+
|
327 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
328 |
+
batch_size = len(prompt)
|
329 |
+
|
330 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
331 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
332 |
+
|
333 |
+
text_inputs = self.tokenizer(
|
334 |
+
prompt,
|
335 |
+
padding="max_length",
|
336 |
+
max_length=self.tokenizer_max_length,
|
337 |
+
truncation=True,
|
338 |
+
return_overflowing_tokens=False,
|
339 |
+
return_length=False,
|
340 |
+
return_tensors="pt",
|
341 |
+
)
|
342 |
+
|
343 |
+
text_input_ids = text_inputs.input_ids
|
344 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
345 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
346 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
347 |
+
logger.warning(
|
348 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
349 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
350 |
+
)
|
351 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
352 |
+
|
353 |
+
# Use pooled output of CLIPTextModel
|
354 |
+
prompt_embeds = prompt_embeds.pooler_output
|
355 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
356 |
+
|
357 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
358 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
359 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
360 |
+
|
361 |
+
return prompt_embeds
|
362 |
+
|
363 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
|
364 |
+
def encode_prompt(
|
365 |
+
self,
|
366 |
+
prompt: Union[str, List[str]],
|
367 |
+
prompt_2: Union[str, List[str]],
|
368 |
+
device: Optional[torch.device] = None,
|
369 |
+
num_images_per_prompt: int = 1,
|
370 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
371 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
372 |
+
max_sequence_length: int = 512,
|
373 |
+
lora_scale: Optional[float] = None,
|
374 |
+
):
|
375 |
+
r"""
|
376 |
+
|
377 |
+
Args:
|
378 |
+
prompt (`str` or `List[str]`, *optional*):
|
379 |
+
prompt to be encoded
|
380 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
381 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
382 |
+
used in all text-encoders
|
383 |
+
device: (`torch.device`):
|
384 |
+
torch device
|
385 |
+
num_images_per_prompt (`int`):
|
386 |
+
number of images that should be generated per prompt
|
387 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
388 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
389 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
390 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
391 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
392 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
393 |
+
lora_scale (`float`, *optional*):
|
394 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
395 |
+
"""
|
396 |
+
device = device or self._execution_device
|
397 |
+
|
398 |
+
# set lora scale so that monkey patched LoRA
|
399 |
+
# function of text encoder can correctly access it
|
400 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
401 |
+
self._lora_scale = lora_scale
|
402 |
+
|
403 |
+
# dynamically adjust the LoRA scale
|
404 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
405 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
406 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
407 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
408 |
+
|
409 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
410 |
+
|
411 |
+
if prompt_embeds is None:
|
412 |
+
prompt_2 = prompt_2 or prompt
|
413 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
414 |
+
|
415 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
416 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
417 |
+
prompt=prompt,
|
418 |
+
device=device,
|
419 |
+
num_images_per_prompt=num_images_per_prompt,
|
420 |
+
)
|
421 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
422 |
+
prompt=prompt_2,
|
423 |
+
num_images_per_prompt=num_images_per_prompt,
|
424 |
+
max_sequence_length=max_sequence_length,
|
425 |
+
device=device,
|
426 |
+
)
|
427 |
+
|
428 |
+
if self.text_encoder is not None:
|
429 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
430 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
431 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
432 |
+
|
433 |
+
if self.text_encoder_2 is not None:
|
434 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
435 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
436 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
437 |
+
|
438 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
439 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
440 |
+
|
441 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
442 |
+
|
443 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
|
444 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
445 |
+
if isinstance(generator, list):
|
446 |
+
image_latents = [
|
447 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
448 |
+
for i in range(image.shape[0])
|
449 |
+
]
|
450 |
+
image_latents = torch.cat(image_latents, dim=0)
|
451 |
+
else:
|
452 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
453 |
+
|
454 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
455 |
+
|
456 |
+
return image_latents
|
457 |
+
|
458 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
|
459 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
460 |
+
# get the original timestep using init_timestep
|
461 |
+
init_timestep = min(num_inference_steps * strength, num_inference_steps)
|
462 |
+
|
463 |
+
t_start = int(max(num_inference_steps - init_timestep, 0))
|
464 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
465 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
466 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
467 |
+
|
468 |
+
return timesteps, num_inference_steps - t_start
|
469 |
+
|
470 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux_img2img.FluxImg2ImgPipeline.check_inputs
|
471 |
+
def check_inputs(
|
472 |
+
self,
|
473 |
+
prompt,
|
474 |
+
prompt_2,
|
475 |
+
strength,
|
476 |
+
height,
|
477 |
+
width,
|
478 |
+
prompt_embeds=None,
|
479 |
+
pooled_prompt_embeds=None,
|
480 |
+
callback_on_step_end_tensor_inputs=None,
|
481 |
+
max_sequence_length=None,
|
482 |
+
):
|
483 |
+
if strength < 0 or strength > 1:
|
484 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
485 |
+
|
486 |
+
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
487 |
+
logger.warning(
|
488 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
489 |
+
)
|
490 |
+
|
491 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
492 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
493 |
+
):
|
494 |
+
raise ValueError(
|
495 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
496 |
+
)
|
497 |
+
|
498 |
+
if prompt is not None and prompt_embeds is not None:
|
499 |
+
raise ValueError(
|
500 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
501 |
+
" only forward one of the two."
|
502 |
+
)
|
503 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
504 |
+
raise ValueError(
|
505 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
506 |
+
" only forward one of the two."
|
507 |
+
)
|
508 |
+
elif prompt is None and prompt_embeds is None:
|
509 |
+
raise ValueError(
|
510 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
511 |
+
)
|
512 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
513 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
514 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
515 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
516 |
+
|
517 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
518 |
+
raise ValueError(
|
519 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
520 |
+
)
|
521 |
+
|
522 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
523 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
524 |
+
|
525 |
+
@staticmethod
|
526 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
|
527 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
528 |
+
latent_image_ids = torch.zeros(height, width, 3)
|
529 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
|
530 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
|
531 |
+
|
532 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
533 |
+
|
534 |
+
latent_image_ids = latent_image_ids.reshape(
|
535 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
536 |
+
)
|
537 |
+
|
538 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
539 |
+
|
540 |
+
@staticmethod
|
541 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
|
542 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
543 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
544 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
545 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
546 |
+
|
547 |
+
return latents
|
548 |
+
|
549 |
+
@staticmethod
|
550 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
|
551 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
552 |
+
batch_size, num_patches, channels = latents.shape
|
553 |
+
|
554 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
555 |
+
# latent height and width to be divisible by 2.
|
556 |
+
height = 2 * (int(height) // (vae_scale_factor * 2))
|
557 |
+
width = 2 * (int(width) // (vae_scale_factor * 2))
|
558 |
+
|
559 |
+
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
560 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
561 |
+
|
562 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
|
563 |
+
|
564 |
+
return latents
|
565 |
+
|
566 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux_img2img.FluxImg2ImgPipeline.prepare_latents
|
567 |
+
def prepare_latents(
|
568 |
+
self,
|
569 |
+
image,
|
570 |
+
timestep,
|
571 |
+
batch_size,
|
572 |
+
num_channels_latents,
|
573 |
+
height,
|
574 |
+
width,
|
575 |
+
dtype,
|
576 |
+
device,
|
577 |
+
generator,
|
578 |
+
latents=None,
|
579 |
+
):
|
580 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
581 |
+
raise ValueError(
|
582 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
583 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
584 |
+
)
|
585 |
+
|
586 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
587 |
+
# latent height and width to be divisible by 2.
|
588 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
589 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
590 |
+
shape = (batch_size, num_channels_latents, height, width)
|
591 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
592 |
+
|
593 |
+
if latents is not None:
|
594 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
595 |
+
|
596 |
+
image = image.to(device=device, dtype=dtype)
|
597 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
598 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
599 |
+
# expand init_latents for batch_size
|
600 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
601 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
602 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
603 |
+
raise ValueError(
|
604 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
605 |
+
)
|
606 |
+
else:
|
607 |
+
image_latents = torch.cat([image_latents], dim=0)
|
608 |
+
|
609 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
610 |
+
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
|
611 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
612 |
+
return latents, noise, image_latents, latent_image_ids
|
613 |
+
|
614 |
+
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
|
615 |
+
def prepare_image(
|
616 |
+
self,
|
617 |
+
image,
|
618 |
+
width,
|
619 |
+
height,
|
620 |
+
batch_size,
|
621 |
+
num_images_per_prompt,
|
622 |
+
device,
|
623 |
+
dtype,
|
624 |
+
do_classifier_free_guidance=False,
|
625 |
+
guess_mode=False,
|
626 |
+
):
|
627 |
+
if isinstance(image, torch.Tensor):
|
628 |
+
pass
|
629 |
+
else:
|
630 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
631 |
+
|
632 |
+
image_batch_size = image.shape[0]
|
633 |
+
|
634 |
+
if image_batch_size == 1:
|
635 |
+
repeat_by = batch_size
|
636 |
+
else:
|
637 |
+
# image batch size is the same as prompt batch size
|
638 |
+
repeat_by = num_images_per_prompt
|
639 |
+
|
640 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
641 |
+
|
642 |
+
image = image.to(device=device, dtype=dtype)
|
643 |
+
|
644 |
+
if do_classifier_free_guidance and not guess_mode:
|
645 |
+
image = torch.cat([image] * 2)
|
646 |
+
|
647 |
+
return image
|
648 |
+
|
649 |
+
|
650 |
+
def prepare_mask_latents(
|
651 |
+
self,
|
652 |
+
mask,
|
653 |
+
masked_image,
|
654 |
+
batch_size,
|
655 |
+
num_channels_latents,
|
656 |
+
num_images_per_prompt,
|
657 |
+
height,
|
658 |
+
width,
|
659 |
+
dtype,
|
660 |
+
device,
|
661 |
+
generator,
|
662 |
+
):
|
663 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
664 |
+
# latent height and width to be divisible by 2.
|
665 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
666 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
667 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
668 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
669 |
+
# and half precision
|
670 |
+
mask = torch.nn.functional.interpolate(mask, size=(height, width))
|
671 |
+
mask = mask.to(device=device, dtype=dtype)
|
672 |
+
|
673 |
+
batch_size = batch_size * num_images_per_prompt
|
674 |
+
|
675 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
676 |
+
|
677 |
+
if masked_image.shape[1] == 16:
|
678 |
+
masked_image_latents = masked_image
|
679 |
+
else:
|
680 |
+
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
681 |
+
|
682 |
+
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
683 |
+
|
684 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
685 |
+
if mask.shape[0] < batch_size:
|
686 |
+
if not batch_size % mask.shape[0] == 0:
|
687 |
+
raise ValueError(
|
688 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
689 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
690 |
+
" of masks that you pass is divisible by the total requested batch size."
|
691 |
+
)
|
692 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
693 |
+
if masked_image_latents.shape[0] < batch_size:
|
694 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
695 |
+
raise ValueError(
|
696 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
697 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
698 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
699 |
+
)
|
700 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
701 |
+
|
702 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
703 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
704 |
+
masked_image_latents = self._pack_latents(
|
705 |
+
masked_image_latents,
|
706 |
+
batch_size,
|
707 |
+
num_channels_latents,
|
708 |
+
height,
|
709 |
+
width,
|
710 |
+
)
|
711 |
+
mask = self._pack_latents(
|
712 |
+
mask.repeat(1, num_channels_latents, 1, 1),
|
713 |
+
batch_size,
|
714 |
+
num_channels_latents,
|
715 |
+
height,
|
716 |
+
width,
|
717 |
+
)
|
718 |
+
|
719 |
+
return mask, masked_image_latents
|
720 |
+
|
721 |
+
@property
|
722 |
+
def guidance_scale(self):
|
723 |
+
return self._guidance_scale
|
724 |
+
|
725 |
+
@property
|
726 |
+
def joint_attention_kwargs(self):
|
727 |
+
return self._joint_attention_kwargs
|
728 |
+
|
729 |
+
@property
|
730 |
+
def num_timesteps(self):
|
731 |
+
return self._num_timesteps
|
732 |
+
|
733 |
+
@property
|
734 |
+
def interrupt(self):
|
735 |
+
return self._interrupt
|
736 |
+
|
737 |
+
@torch.no_grad()
|
738 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
739 |
+
def __call__(
|
740 |
+
self,
|
741 |
+
prompt: Union[str, List[str]] = None,
|
742 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
743 |
+
image: PipelineImageInput = None,
|
744 |
+
control_image: PipelineImageInput = None,
|
745 |
+
mask_image: PipelineImageInput = None,
|
746 |
+
masked_image_latents: PipelineImageInput = None,
|
747 |
+
height: Optional[int] = None,
|
748 |
+
width: Optional[int] = None,
|
749 |
+
strength: float = 0.6,
|
750 |
+
num_inference_steps: int = 28,
|
751 |
+
timesteps: List[int] = None,
|
752 |
+
guidance_scale: float = 7.0,
|
753 |
+
num_images_per_prompt: Optional[int] = 1,
|
754 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
755 |
+
latents: Optional[torch.FloatTensor] = None,
|
756 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
757 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
758 |
+
output_type: Optional[str] = "pil",
|
759 |
+
return_dict: bool = True,
|
760 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
761 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
762 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
763 |
+
max_sequence_length: int = 512,
|
764 |
+
):
|
765 |
+
r"""
|
766 |
+
Function invoked when calling the pipeline for generation.
|
767 |
+
|
768 |
+
Args:
|
769 |
+
prompt (`str` or `List[str]`, *optional*):
|
770 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
771 |
+
instead.
|
772 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
773 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
774 |
+
will be used instead
|
775 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
776 |
+
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
777 |
+
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
778 |
+
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
779 |
+
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
780 |
+
latents as `image`, but if passing latents directly it is not encoded again.
|
781 |
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
782 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
783 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
784 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
785 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
786 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
787 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
788 |
+
to a single ControlNet.
|
789 |
+
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
790 |
+
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
|
791 |
+
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
792 |
+
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
793 |
+
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
|
794 |
+
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
|
795 |
+
1)`, or `(H, W)`.
|
796 |
+
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
|
797 |
+
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
|
798 |
+
latents tensor will ge generated by `mask_image`.
|
799 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
800 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
801 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
802 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
803 |
+
strength (`float`, *optional*, defaults to 1.0):
|
804 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
805 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
806 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
807 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
808 |
+
essentially ignores `image`.
|
809 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
810 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
811 |
+
expense of slower inference.
|
812 |
+
timesteps (`List[int]`, *optional*):
|
813 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
814 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
815 |
+
passed will be used. Must be in descending order.
|
816 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
817 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
818 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
819 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
820 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
821 |
+
usually at the expense of lower image quality.
|
822 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
823 |
+
The number of images to generate per prompt.
|
824 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
825 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
826 |
+
to make generation deterministic.
|
827 |
+
latents (`torch.FloatTensor`, *optional*):
|
828 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
829 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
830 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
831 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
832 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
833 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
834 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
835 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
836 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
837 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
838 |
+
The output format of the generate image. Choose between
|
839 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
840 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
841 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
842 |
+
joint_attention_kwargs (`dict`, *optional*):
|
843 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
844 |
+
`self.processor` in
|
845 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
846 |
+
callback_on_step_end (`Callable`, *optional*):
|
847 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
848 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
849 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
850 |
+
`callback_on_step_end_tensor_inputs`.
|
851 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
852 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
853 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
854 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
855 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
856 |
+
|
857 |
+
Examples:
|
858 |
+
|
859 |
+
Returns:
|
860 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
861 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
862 |
+
images.
|
863 |
+
"""
|
864 |
+
|
865 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
866 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
867 |
+
|
868 |
+
# 1. Check inputs. Raise error if not correct
|
869 |
+
self.check_inputs(
|
870 |
+
prompt,
|
871 |
+
prompt_2,
|
872 |
+
strength,
|
873 |
+
height,
|
874 |
+
width,
|
875 |
+
prompt_embeds=prompt_embeds,
|
876 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
877 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
878 |
+
max_sequence_length=max_sequence_length,
|
879 |
+
)
|
880 |
+
|
881 |
+
self._guidance_scale = guidance_scale
|
882 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
883 |
+
self._interrupt = False
|
884 |
+
device = self._execution_device
|
885 |
+
|
886 |
+
# 3. Define call parameters
|
887 |
+
if prompt is not None and isinstance(prompt, str):
|
888 |
+
batch_size = 1
|
889 |
+
elif prompt is not None and isinstance(prompt, list):
|
890 |
+
batch_size = len(prompt)
|
891 |
+
else:
|
892 |
+
batch_size = prompt_embeds.shape[0]
|
893 |
+
|
894 |
+
device = self._execution_device
|
895 |
+
|
896 |
+
# 3. Prepare text embeddings
|
897 |
+
lora_scale = (
|
898 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
899 |
+
)
|
900 |
+
(
|
901 |
+
prompt_embeds,
|
902 |
+
pooled_prompt_embeds,
|
903 |
+
text_ids,
|
904 |
+
) = self.encode_prompt(
|
905 |
+
prompt=prompt,
|
906 |
+
prompt_2=prompt_2,
|
907 |
+
prompt_embeds=prompt_embeds,
|
908 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
909 |
+
device=device,
|
910 |
+
num_images_per_prompt=num_images_per_prompt,
|
911 |
+
max_sequence_length=max_sequence_length,
|
912 |
+
lora_scale=lora_scale,
|
913 |
+
)
|
914 |
+
|
915 |
+
|
916 |
+
# 3. Preprocess mask and image
|
917 |
+
num_channels_latents = self.vae.config.latent_channels
|
918 |
+
if masked_image_latents is not None:
|
919 |
+
masked_image_latents = masked_image_latents.to(latents.device)
|
920 |
+
else:
|
921 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
922 |
+
mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width)
|
923 |
+
|
924 |
+
masked_image = image * (1 - mask_image)
|
925 |
+
masked_image = masked_image.to(device=device, dtype=prompt_embeds.dtype)
|
926 |
+
|
927 |
+
height, width = image.shape[-2:]
|
928 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
929 |
+
mask_image,
|
930 |
+
masked_image,
|
931 |
+
batch_size,
|
932 |
+
num_channels_latents,
|
933 |
+
num_images_per_prompt,
|
934 |
+
height,
|
935 |
+
width,
|
936 |
+
prompt_embeds.dtype,
|
937 |
+
device,
|
938 |
+
generator,
|
939 |
+
)
|
940 |
+
masked_image_latents = torch.cat((masked_image_latents, mask), dim=-1)
|
941 |
+
|
942 |
+
init_image = self.image_processor.preprocess(image, height=height, width=width)
|
943 |
+
init_image = init_image.to(dtype=torch.float32)
|
944 |
+
|
945 |
+
# 4.Prepare timesteps
|
946 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
947 |
+
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
|
948 |
+
mu = calculate_shift(
|
949 |
+
image_seq_len,
|
950 |
+
self.scheduler.config.base_image_seq_len,
|
951 |
+
self.scheduler.config.max_image_seq_len,
|
952 |
+
self.scheduler.config.base_shift,
|
953 |
+
self.scheduler.config.max_shift,
|
954 |
+
)
|
955 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
956 |
+
self.scheduler,
|
957 |
+
num_inference_steps,
|
958 |
+
device,
|
959 |
+
timesteps,
|
960 |
+
sigmas,
|
961 |
+
mu=mu,
|
962 |
+
)
|
963 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
964 |
+
|
965 |
+
if num_inference_steps < 1:
|
966 |
+
raise ValueError(
|
967 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
968 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
969 |
+
)
|
970 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
971 |
+
|
972 |
+
# 5. Prepare latent variables
|
973 |
+
num_channels_latents = self.transformer.config.in_channels // 8
|
974 |
+
|
975 |
+
control_image = self.prepare_image(
|
976 |
+
image=control_image,
|
977 |
+
width=width,
|
978 |
+
height=height,
|
979 |
+
batch_size=batch_size * num_images_per_prompt,
|
980 |
+
num_images_per_prompt=num_images_per_prompt,
|
981 |
+
device=device,
|
982 |
+
dtype=self.vae.dtype,
|
983 |
+
)
|
984 |
+
|
985 |
+
if control_image.ndim == 4:
|
986 |
+
control_image = self.vae.encode(control_image).latent_dist.sample(generator=generator)
|
987 |
+
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
988 |
+
|
989 |
+
height_control_image, width_control_image = control_image.shape[2:]
|
990 |
+
control_image = self._pack_latents(
|
991 |
+
control_image,
|
992 |
+
batch_size * num_images_per_prompt,
|
993 |
+
num_channels_latents,
|
994 |
+
height_control_image,
|
995 |
+
width_control_image,
|
996 |
+
)
|
997 |
+
|
998 |
+
latents, noise, image_latents, latent_image_ids = self.prepare_latents(
|
999 |
+
init_image,
|
1000 |
+
latent_timestep,
|
1001 |
+
batch_size * num_images_per_prompt,
|
1002 |
+
num_channels_latents,
|
1003 |
+
height,
|
1004 |
+
width,
|
1005 |
+
prompt_embeds.dtype,
|
1006 |
+
device,
|
1007 |
+
generator,
|
1008 |
+
latents,
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
1012 |
+
# latent height and width to be divisible by 2.
|
1013 |
+
height_8 = 2 * (int(height) // (self.vae_scale_factor * 2))
|
1014 |
+
width_8 = 2 * (int(width) // (self.vae_scale_factor * 2))
|
1015 |
+
|
1016 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1017 |
+
self._num_timesteps = len(timesteps)
|
1018 |
+
|
1019 |
+
# handle guidance
|
1020 |
+
if self.transformer.config.guidance_embeds:
|
1021 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
1022 |
+
guidance = guidance.expand(latents.shape[0])
|
1023 |
+
else:
|
1024 |
+
guidance = None
|
1025 |
+
|
1026 |
+
# 6. Denoising loop
|
1027 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1028 |
+
for i, t in enumerate(timesteps):
|
1029 |
+
if self.interrupt:
|
1030 |
+
continue
|
1031 |
+
|
1032 |
+
latent_model_input = torch.cat([latents, control_image], dim=2)
|
1033 |
+
|
1034 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1035 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
1036 |
+
|
1037 |
+
noise_pred = self.transformer(
|
1038 |
+
hidden_states=latent_model_input,
|
1039 |
+
timestep=timestep / 1000,
|
1040 |
+
guidance=guidance,
|
1041 |
+
pooled_projections=pooled_prompt_embeds,
|
1042 |
+
encoder_hidden_states=prompt_embeds,
|
1043 |
+
txt_ids=text_ids,
|
1044 |
+
img_ids=latent_image_ids,
|
1045 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1046 |
+
return_dict=False,
|
1047 |
+
)[0]
|
1048 |
+
|
1049 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1050 |
+
latents_dtype = latents.dtype
|
1051 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1052 |
+
|
1053 |
+
# for 64 channel transformer only.
|
1054 |
+
init_latents_proper = image_latents
|
1055 |
+
init_mask = mask
|
1056 |
+
if i < len(timesteps) - 1:
|
1057 |
+
noise_timestep = timesteps[i + 1]
|
1058 |
+
init_latents_proper = self.scheduler.scale_noise(init_latents_proper, torch.tensor([noise_timestep]), noise)
|
1059 |
+
init_latents_proper = self._pack_latents(init_latents_proper, batch_size, num_channels_latents, height_8, width_8)
|
1060 |
+
|
1061 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1062 |
+
|
1063 |
+
if latents.dtype != latents_dtype:
|
1064 |
+
if torch.backends.mps.is_available():
|
1065 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1066 |
+
latents = latents.to(latents_dtype)
|
1067 |
+
|
1068 |
+
if callback_on_step_end is not None:
|
1069 |
+
callback_kwargs = {}
|
1070 |
+
for k in callback_on_step_end_tensor_inputs:
|
1071 |
+
callback_kwargs[k] = locals()[k]
|
1072 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1073 |
+
|
1074 |
+
latents = callback_outputs.pop("latents", latents)
|
1075 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1076 |
+
|
1077 |
+
# call the callback, if provided
|
1078 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1079 |
+
progress_bar.update()
|
1080 |
+
|
1081 |
+
if XLA_AVAILABLE:
|
1082 |
+
xm.mark_step()
|
1083 |
+
|
1084 |
+
if output_type == "latent":
|
1085 |
+
image = latents
|
1086 |
+
|
1087 |
+
else:
|
1088 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
1089 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1090 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1091 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1092 |
+
|
1093 |
+
# Offload all models
|
1094 |
+
self.maybe_free_model_hooks()
|
1095 |
+
|
1096 |
+
if not return_dict:
|
1097 |
+
return (image,)
|
1098 |
+
|
1099 |
+
return FluxPipelineOutput(images=image)
|