End of training
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: TheBloke/vigogne-2-70B-chat-GPTQ
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: Vigogne70b-ass-fan
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Vigogne70b-ass-fan
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [TheBloke/vigogne-2-70B-chat-GPTQ](https://huggingface.co/TheBloke/vigogne-2-70B-chat-GPTQ) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.8725
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0004
|
38 |
+
- train_batch_size: 1
|
39 |
+
- eval_batch_size: 1
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 2
|
44 |
+
- training_steps: 500
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| No log | 0.09 | 40 | 1.0751 |
|
52 |
+
| No log | 0.17 | 80 | 0.9983 |
|
53 |
+
| No log | 0.26 | 120 | 0.9894 |
|
54 |
+
| No log | 0.35 | 160 | 0.9468 |
|
55 |
+
| No log | 0.44 | 200 | 0.9348 |
|
56 |
+
| No log | 0.52 | 240 | 0.9185 |
|
57 |
+
| No log | 0.61 | 280 | 0.9027 |
|
58 |
+
| No log | 0.7 | 320 | 0.8952 |
|
59 |
+
| No log | 0.78 | 360 | 0.8924 |
|
60 |
+
| No log | 0.87 | 400 | 0.8806 |
|
61 |
+
| No log | 0.96 | 440 | 0.8769 |
|
62 |
+
| No log | 1.05 | 480 | 0.8725 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.35.2
|
68 |
+
- Pytorch 2.1.0+cu118
|
69 |
+
- Datasets 2.15.0
|
70 |
+
- Tokenizers 0.15.0
|