afaji commited on
Commit
cac10ab
1 Parent(s): e7510dd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ - precision
8
+ - recall
9
+ model-index:
10
+ - name: fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-without-ITTL-without-freeze-LR-1e-05
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-without-ITTL-without-freeze-LR-1e-05
18
+
19
+ This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1493
22
+ - Exact Match: 60.5585
23
+ - F1: 75.1071
24
+ - Precision: 76.3329
25
+ - Recall: 81.4497
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 1e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 64
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.06
53
+ - num_epochs: 16
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|:---------:|:-------:|
59
+ | 6.1192 | 0.5 | 38 | 4.8873 | 4.0140 | 16.4529 | 16.4981 | 38.0734 |
60
+ | 5.4384 | 0.99 | 76 | 2.8628 | 16.7539 | 29.8825 | 29.0280 | 50.2974 |
61
+ | 3.1591 | 1.5 | 114 | 2.4374 | 24.2583 | 36.1059 | 35.6027 | 53.7380 |
62
+ | 2.4014 | 1.99 | 152 | 2.2367 | 30.0175 | 41.9697 | 41.9505 | 53.7706 |
63
+ | 2.4014 | 2.5 | 190 | 2.0861 | 33.5079 | 45.2875 | 45.6044 | 55.6393 |
64
+ | 2.1121 | 2.99 | 228 | 1.8134 | 41.1867 | 52.1539 | 53.0988 | 60.0665 |
65
+ | 1.8437 | 3.5 | 266 | 1.5977 | 46.0733 | 59.5453 | 60.0688 | 69.5715 |
66
+ | 1.5105 | 3.99 | 304 | 1.3928 | 51.4834 | 65.0228 | 65.8592 | 72.3641 |
67
+ | 1.5105 | 4.5 | 342 | 1.3275 | 54.9738 | 68.7090 | 69.9803 | 75.8245 |
68
+ | 1.2337 | 4.99 | 380 | 1.2185 | 56.8935 | 70.5705 | 72.3556 | 75.7959 |
69
+ | 1.1333 | 5.5 | 418 | 1.2537 | 57.2426 | 70.9476 | 72.6953 | 75.6818 |
70
+ | 0.9915 | 5.99 | 456 | 1.1484 | 58.4642 | 73.3124 | 75.0975 | 78.1646 |
71
+ | 0.9915 | 6.5 | 494 | 1.1665 | 59.3368 | 74.0503 | 75.6279 | 79.6335 |
72
+ | 0.8931 | 6.99 | 532 | 1.1316 | 59.6859 | 74.4803 | 75.9433 | 79.8837 |
73
+ | 0.8498 | 7.5 | 570 | 1.1414 | 60.9075 | 75.3350 | 76.5606 | 81.1204 |
74
+ | 0.7783 | 7.99 | 608 | 1.1332 | 60.3839 | 75.2719 | 76.8970 | 81.1038 |
75
+ | 0.7783 | 8.5 | 646 | 1.1133 | 61.2565 | 75.3214 | 76.9111 | 81.1566 |
76
+ | 0.7209 | 8.99 | 684 | 1.1493 | 60.5585 | 75.1071 | 76.3329 | 81.4497 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.26.1
82
+ - Pytorch 1.13.1+cu117
83
+ - Datasets 2.2.0
84
+ - Tokenizers 0.13.2