update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
model-index:
|
10 |
+
- name: fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-without-ITTL-without-freeze-LR-1e-05
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-without-ITTL-without-freeze-LR-1e-05
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.1493
|
22 |
+
- Exact Match: 60.5585
|
23 |
+
- F1: 75.1071
|
24 |
+
- Precision: 76.3329
|
25 |
+
- Recall: 81.4497
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 4
|
49 |
+
- total_train_batch_size: 64
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.06
|
53 |
+
- num_epochs: 16
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|:---------:|:-------:|
|
59 |
+
| 6.1192 | 0.5 | 38 | 4.8873 | 4.0140 | 16.4529 | 16.4981 | 38.0734 |
|
60 |
+
| 5.4384 | 0.99 | 76 | 2.8628 | 16.7539 | 29.8825 | 29.0280 | 50.2974 |
|
61 |
+
| 3.1591 | 1.5 | 114 | 2.4374 | 24.2583 | 36.1059 | 35.6027 | 53.7380 |
|
62 |
+
| 2.4014 | 1.99 | 152 | 2.2367 | 30.0175 | 41.9697 | 41.9505 | 53.7706 |
|
63 |
+
| 2.4014 | 2.5 | 190 | 2.0861 | 33.5079 | 45.2875 | 45.6044 | 55.6393 |
|
64 |
+
| 2.1121 | 2.99 | 228 | 1.8134 | 41.1867 | 52.1539 | 53.0988 | 60.0665 |
|
65 |
+
| 1.8437 | 3.5 | 266 | 1.5977 | 46.0733 | 59.5453 | 60.0688 | 69.5715 |
|
66 |
+
| 1.5105 | 3.99 | 304 | 1.3928 | 51.4834 | 65.0228 | 65.8592 | 72.3641 |
|
67 |
+
| 1.5105 | 4.5 | 342 | 1.3275 | 54.9738 | 68.7090 | 69.9803 | 75.8245 |
|
68 |
+
| 1.2337 | 4.99 | 380 | 1.2185 | 56.8935 | 70.5705 | 72.3556 | 75.7959 |
|
69 |
+
| 1.1333 | 5.5 | 418 | 1.2537 | 57.2426 | 70.9476 | 72.6953 | 75.6818 |
|
70 |
+
| 0.9915 | 5.99 | 456 | 1.1484 | 58.4642 | 73.3124 | 75.0975 | 78.1646 |
|
71 |
+
| 0.9915 | 6.5 | 494 | 1.1665 | 59.3368 | 74.0503 | 75.6279 | 79.6335 |
|
72 |
+
| 0.8931 | 6.99 | 532 | 1.1316 | 59.6859 | 74.4803 | 75.9433 | 79.8837 |
|
73 |
+
| 0.8498 | 7.5 | 570 | 1.1414 | 60.9075 | 75.3350 | 76.5606 | 81.1204 |
|
74 |
+
| 0.7783 | 7.99 | 608 | 1.1332 | 60.3839 | 75.2719 | 76.8970 | 81.1038 |
|
75 |
+
| 0.7783 | 8.5 | 646 | 1.1133 | 61.2565 | 75.3214 | 76.9111 | 81.1566 |
|
76 |
+
| 0.7209 | 8.99 | 684 | 1.1493 | 60.5585 | 75.1071 | 76.3329 | 81.4497 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.26.1
|
82 |
+
- Pytorch 1.13.1+cu117
|
83 |
+
- Datasets 2.2.0
|
84 |
+
- Tokenizers 0.13.2
|