Upload model
Browse files- config.json +3 -0
- modelling_single.py +410 -0
config.json
CHANGED
@@ -3,6 +3,9 @@
|
|
3 |
"architectures": [
|
4 |
"SingleCXREncoderDecoderModel"
|
5 |
],
|
|
|
|
|
|
|
6 |
"decoder": {
|
7 |
"_name_or_path": "",
|
8 |
"add_cross_attention": true,
|
|
|
3 |
"architectures": [
|
4 |
"SingleCXREncoderDecoderModel"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModel": "modelling_single.SingleCXREncoderDecoderModel"
|
8 |
+
},
|
9 |
"decoder": {
|
10 |
"_name_or_path": "",
|
11 |
"add_cross_attention": true,
|
modelling_single.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import transformers
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
from transformers import VisionEncoderDecoderModel
|
8 |
+
from transformers.configuration_utils import PretrainedConfig
|
9 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
10 |
+
from transformers.modeling_utils import PreTrainedModel
|
11 |
+
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \
|
12 |
+
VisionEncoderDecoderConfig
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class CvtWithProjectionHeadConfig(transformers.CvtConfig):
|
19 |
+
def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
|
20 |
+
super().__init__(**kwargs)
|
21 |
+
self.projection_size = projection_size
|
22 |
+
|
23 |
+
|
24 |
+
class ModelOutputWithProjectionEmbedding(transformers.modeling_outputs.ModelOutput):
|
25 |
+
projected_last_hidden_state: torch.FloatTensor
|
26 |
+
|
27 |
+
|
28 |
+
class CvtProjectionHead(torch.nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, config) -> None:
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
|
34 |
+
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
|
35 |
+
|
36 |
+
# No bias as following layer normalisation with bias:
|
37 |
+
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
|
38 |
+
|
39 |
+
|
40 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
41 |
+
x = self.layer_norm(x)
|
42 |
+
x = self.projection(x)
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
class CvtWithProjectionHead(transformers.CvtPreTrainedModel):
|
47 |
+
def __init__(self, config):
|
48 |
+
super().__init__(config)
|
49 |
+
|
50 |
+
self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
|
51 |
+
self.projection_head = CvtProjectionHead(config)
|
52 |
+
|
53 |
+
# Initialize weights and apply final processing:
|
54 |
+
self.post_init()
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
pixel_values: Optional[torch.Tensor] = None,
|
59 |
+
output_hidden_states: Optional[bool] = None,
|
60 |
+
return_dict: Optional[bool] = None,
|
61 |
+
) -> Union[Tuple, ModelOutputWithProjectionEmbedding]:
|
62 |
+
|
63 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
64 |
+
|
65 |
+
outputs = self.cvt(
|
66 |
+
pixel_values,
|
67 |
+
output_hidden_states=output_hidden_states,
|
68 |
+
return_dict=return_dict,
|
69 |
+
)
|
70 |
+
|
71 |
+
projection = self.projection_head(
|
72 |
+
torch.permute(torch.flatten(outputs.last_hidden_state, 2), [0, 2, 1]),
|
73 |
+
)
|
74 |
+
|
75 |
+
if not return_dict:
|
76 |
+
return projection
|
77 |
+
|
78 |
+
return ModelOutputWithProjectionEmbedding(
|
79 |
+
projected_last_hidden_state=projection,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
class SingleCXREncoderDecoderModel(VisionEncoderDecoderModel):
|
84 |
+
|
85 |
+
config_class = VisionEncoderDecoderConfig
|
86 |
+
base_model_prefix = "vision_encoder_decoder"
|
87 |
+
main_input_name = "pixel_values"
|
88 |
+
supports_gradient_checkpointing = True
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
config: Optional[PretrainedConfig] = None,
|
93 |
+
encoder: Optional[PreTrainedModel] = None,
|
94 |
+
decoder: Optional[PreTrainedModel] = None,
|
95 |
+
):
|
96 |
+
|
97 |
+
if config is None and (encoder is None or decoder is None):
|
98 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
99 |
+
if config is None:
|
100 |
+
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
101 |
+
else:
|
102 |
+
if not isinstance(config, self.config_class):
|
103 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
104 |
+
|
105 |
+
config.tie_word_embeddings = False
|
106 |
+
|
107 |
+
# initialize with config
|
108 |
+
PreTrainedModel.__init__(self, config)
|
109 |
+
|
110 |
+
# Encoder:
|
111 |
+
if encoder is None:
|
112 |
+
encoder = CvtWithProjectionHead(config=config.encoder)
|
113 |
+
|
114 |
+
# Decoder:
|
115 |
+
if decoder is None:
|
116 |
+
decoder = transformers.BertLMHeadModel(config=config.decoder)
|
117 |
+
|
118 |
+
self.encoder = encoder
|
119 |
+
self.decoder = decoder
|
120 |
+
|
121 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
122 |
+
logger.warning(
|
123 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
124 |
+
f" {self.config.encoder}"
|
125 |
+
)
|
126 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
127 |
+
logger.warning(
|
128 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
129 |
+
f" {self.config.decoder}"
|
130 |
+
)
|
131 |
+
|
132 |
+
self.encoder.config = self.config.encoder
|
133 |
+
self.decoder.config = self.config.decoder
|
134 |
+
|
135 |
+
# config.add_cross_attention = True
|
136 |
+
# config.is_decoder = True
|
137 |
+
|
138 |
+
def forward(
|
139 |
+
self,
|
140 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
141 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
142 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
143 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
144 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
145 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
146 |
+
labels: Optional[torch.LongTensor] = None,
|
147 |
+
use_cache: Optional[bool] = None,
|
148 |
+
output_attentions: Optional[bool] = None,
|
149 |
+
output_hidden_states: Optional[bool] = None,
|
150 |
+
return_dict: Optional[bool] = None,
|
151 |
+
**kwargs,
|
152 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
153 |
+
|
154 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
155 |
+
|
156 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
157 |
+
|
158 |
+
kwargs_decoder = {
|
159 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
160 |
+
}
|
161 |
+
|
162 |
+
if encoder_outputs is None:
|
163 |
+
if pixel_values is None:
|
164 |
+
raise ValueError("You have to specify pixel_values")
|
165 |
+
|
166 |
+
encoder_outputs = self.encoder(
|
167 |
+
pixel_values,
|
168 |
+
output_hidden_states=output_hidden_states,
|
169 |
+
return_dict=return_dict,
|
170 |
+
**kwargs_encoder,
|
171 |
+
) # CvT does not support output_attentions.
|
172 |
+
elif isinstance(encoder_outputs, tuple):
|
173 |
+
encoder_outputs = BaseModelOutput(*encoder_outputs)
|
174 |
+
|
175 |
+
encoder_hidden_states = encoder_outputs[0]
|
176 |
+
encoder_attention_mask = None
|
177 |
+
|
178 |
+
decoder_outputs = self.decoder(
|
179 |
+
input_ids=decoder_input_ids,
|
180 |
+
attention_mask=decoder_attention_mask,
|
181 |
+
encoder_hidden_states=encoder_hidden_states,
|
182 |
+
encoder_attention_mask=encoder_attention_mask,
|
183 |
+
inputs_embeds=decoder_inputs_embeds,
|
184 |
+
output_attentions=output_attentions,
|
185 |
+
output_hidden_states=output_hidden_states,
|
186 |
+
use_cache=use_cache,
|
187 |
+
past_key_values=past_key_values,
|
188 |
+
return_dict=return_dict,
|
189 |
+
**kwargs_decoder,
|
190 |
+
)
|
191 |
+
|
192 |
+
# Loss:
|
193 |
+
loss = None
|
194 |
+
if labels is not None:
|
195 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
196 |
+
loss_fct = CrossEntropyLoss()
|
197 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
198 |
+
|
199 |
+
if not return_dict:
|
200 |
+
if loss is not None:
|
201 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
202 |
+
else:
|
203 |
+
return decoder_outputs + encoder_outputs
|
204 |
+
|
205 |
+
return Seq2SeqLMOutput(
|
206 |
+
loss=loss,
|
207 |
+
logits=decoder_outputs.logits,
|
208 |
+
past_key_values=decoder_outputs.past_key_values,
|
209 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
210 |
+
decoder_attentions=decoder_outputs.attentions,
|
211 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
212 |
+
encoder_last_hidden_state=encoder_outputs.projected_last_hidden_state,
|
213 |
+
# encoder_hidden_states=encoder_outputs.hidden_states,
|
214 |
+
# encoder_attentions=encoder_outputs.attentions,
|
215 |
+
)
|
216 |
+
|
217 |
+
def prepare_inputs_for_generation(
|
218 |
+
self,
|
219 |
+
input_ids,
|
220 |
+
special_token_ids,
|
221 |
+
past_key_values=None,
|
222 |
+
attention_mask=None,
|
223 |
+
use_cache=None,
|
224 |
+
encoder_outputs=None,
|
225 |
+
**kwargs,
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Modification of:
|
229 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
230 |
+
"""
|
231 |
+
|
232 |
+
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
|
233 |
+
decoder_attention_mask = decoder_inputs['attention_mask'] if 'attention_mask' in decoder_inputs else None
|
234 |
+
|
235 |
+
if not past_key_values:
|
236 |
+
token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids)
|
237 |
+
else:
|
238 |
+
token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids)
|
239 |
+
|
240 |
+
input_dict = {
|
241 |
+
'attention_mask': attention_mask,
|
242 |
+
'decoder_attention_mask': decoder_attention_mask,
|
243 |
+
'decoder_input_ids': decoder_inputs['input_ids'],
|
244 |
+
'decoder_token_type_ids': token_type_ids,
|
245 |
+
'encoder_outputs': encoder_outputs,
|
246 |
+
'past_key_values': decoder_inputs['past_key_values'],
|
247 |
+
'use_cache': use_cache,
|
248 |
+
}
|
249 |
+
return input_dict
|
250 |
+
|
251 |
+
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
|
252 |
+
"""
|
253 |
+
Extract token type identifiers from the token identifiers.
|
254 |
+
|
255 |
+
Argument/s:
|
256 |
+
token_ids - token identifiers.
|
257 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
258 |
+
token_type_id_section - token type identifier for each section.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
token_type_ids - token type identifiers.
|
262 |
+
"""
|
263 |
+
|
264 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
265 |
+
|
266 |
+
mbatch_size, seq_len = token_ids.shape
|
267 |
+
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
268 |
+
|
269 |
+
for i, j in enumerate(special_token_ids):
|
270 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
271 |
+
cols = (token_ids == j).int().argmax(dim=1)
|
272 |
+
rows = torch.arange(mbatch_size, device=token_ids.device)
|
273 |
+
|
274 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
275 |
+
cols += 1
|
276 |
+
|
277 |
+
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
|
278 |
+
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
|
279 |
+
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
|
280 |
+
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
|
281 |
+
|
282 |
+
# Indices to that correspond to the second sequence:
|
283 |
+
if rows.nelement() != 0:
|
284 |
+
ids = torch.stack([
|
285 |
+
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
|
286 |
+
y, seq_len, device=token_ids.device,
|
287 |
+
)
|
288 |
+
])
|
289 |
+
|
290 |
+
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
|
291 |
+
|
292 |
+
return token_type_ids
|
293 |
+
|
294 |
+
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
|
295 |
+
"""
|
296 |
+
Extract token type identifiers from the token identifiers if past != None.
|
297 |
+
|
298 |
+
Argument/s:
|
299 |
+
token_ids - token identifiers.
|
300 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
token_type_ids - token type identifiers.
|
304 |
+
"""
|
305 |
+
|
306 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
307 |
+
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
308 |
+
|
309 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
310 |
+
token_ids = token_ids[:, :-1]
|
311 |
+
|
312 |
+
for i, j in enumerate(special_token_ids):
|
313 |
+
|
314 |
+
# Find first occurrence of special token, which indicates the boundary between sections:
|
315 |
+
exists = torch.any(token_ids == j, dim=1, keepdim=True)
|
316 |
+
token_type_ids[exists] = token_type_id_sections[i + 1]
|
317 |
+
|
318 |
+
return token_type_ids
|
319 |
+
|
320 |
+
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer):
|
321 |
+
"""
|
322 |
+
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
323 |
+
|
324 |
+
Argument/s:
|
325 |
+
findings - findings section.
|
326 |
+
impression - impression section.
|
327 |
+
return_token_type_ids - return the token type identifiers.
|
328 |
+
tokenizer - Hugging Face tokenizer.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
decoder_input_ids - the token identifiers for the input of the decoder.
|
332 |
+
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
333 |
+
label_ids - the label token identifiers for the decoder.
|
334 |
+
"""
|
335 |
+
|
336 |
+
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
337 |
+
report = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
338 |
+
zip(findings, impression)]
|
339 |
+
|
340 |
+
# Tokenize the report:
|
341 |
+
tokenized = tokenizer(
|
342 |
+
report,
|
343 |
+
padding='longest',
|
344 |
+
truncation=True,
|
345 |
+
max_length=self.decoder_max_len + 1, # +1 to account for the bias between input and target.
|
346 |
+
return_tensors='pt',
|
347 |
+
return_token_type_ids=False,
|
348 |
+
add_special_tokens=False,
|
349 |
+
).to(self.device)
|
350 |
+
|
351 |
+
# Modify for language modelling:
|
352 |
+
batch_dict = {
|
353 |
+
|
354 |
+
# Labels for the decoder (shifted right by one for autoregression):
|
355 |
+
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
356 |
+
|
357 |
+
# Remove last token identifier to match the sequence length of the labels:
|
358 |
+
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
359 |
+
|
360 |
+
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
361 |
+
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
362 |
+
}
|
363 |
+
|
364 |
+
return batch_dict
|
365 |
+
|
366 |
+
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer):
|
367 |
+
"""
|
368 |
+
Split the token identifiers into sections, then convert the token identifiers into strings.
|
369 |
+
|
370 |
+
Argument/s:
|
371 |
+
token_ids - token identifiers.
|
372 |
+
special_token_ids - special token identifiers that indicate the end of each section.
|
373 |
+
tokenizer - Hugging Face tokenizer.
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
token_type_ids - token type identifiers.
|
377 |
+
"""
|
378 |
+
|
379 |
+
_, seq_len = token_ids.shape
|
380 |
+
|
381 |
+
# The number of sections is the same as the number of special_token_ids:
|
382 |
+
num_sections = len(special_token_ids)
|
383 |
+
|
384 |
+
sections = {k: [] for k in range(num_sections)}
|
385 |
+
|
386 |
+
for i in token_ids:
|
387 |
+
prev_col = 0
|
388 |
+
for j, k in enumerate(special_token_ids):
|
389 |
+
|
390 |
+
# The maximum sequence length was exceeded, thus no more tokens:
|
391 |
+
if prev_col >= seq_len:
|
392 |
+
sections[j].append('')
|
393 |
+
continue
|
394 |
+
|
395 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
396 |
+
col = (i == k).int().argmax().item()
|
397 |
+
|
398 |
+
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
|
399 |
+
# the maximum sequence length):
|
400 |
+
if col == 0:
|
401 |
+
col = seq_len
|
402 |
+
|
403 |
+
# Extract section token identifiers:
|
404 |
+
section_token_ids = i[prev_col:col]
|
405 |
+
prev_col = col
|
406 |
+
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
|
407 |
+
|
408 |
+
sections[j].append(section_string)
|
409 |
+
|
410 |
+
return tuple(sections.values())
|