Update README.md
Browse files
README.md
CHANGED
@@ -23,7 +23,13 @@ To handle missing sections, we employ special tokens.
|
|
23 |
We also utilise an attention mask with non-causal masking for the image embeddings and a causal mask for the report token embeddings.
|
24 |
|
25 |
## How to use:
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
tokenizer = transformers.AutoTokenizer.from_pretrained('aehrc/cxrmate-rrg24')
|
28 |
model = transformers.AutoModel.from_pretrained('aehrc/cxrmate-rrg24', trust_remote_code=True)
|
29 |
transforms = v2.Compose(
|
@@ -38,7 +44,7 @@ transforms = v2.Compose(
|
|
38 |
)
|
39 |
image = transforms(image)
|
40 |
output_ids = model.generate(
|
41 |
-
pixel_values=
|
42 |
max_length=512,
|
43 |
bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NF]')], [tokenizer.convert_tokens_to_ids('[NI]')]],
|
44 |
num_beams=4,
|
|
|
23 |
We also utilise an attention mask with non-causal masking for the image embeddings and a causal mask for the report token embeddings.
|
24 |
|
25 |
## How to use:
|
26 |
+
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
from torchvision.transforms import v2
|
30 |
+
import transformers
|
31 |
+
|
32 |
+
|
33 |
tokenizer = transformers.AutoTokenizer.from_pretrained('aehrc/cxrmate-rrg24')
|
34 |
model = transformers.AutoModel.from_pretrained('aehrc/cxrmate-rrg24', trust_remote_code=True)
|
35 |
transforms = v2.Compose(
|
|
|
44 |
)
|
45 |
image = transforms(image)
|
46 |
output_ids = model.generate(
|
47 |
+
pixel_values=images,
|
48 |
max_length=512,
|
49 |
bad_words_ids=[[tokenizer.convert_tokens_to_ids('[NF]')], [tokenizer.convert_tokens_to_ids('[NI]')]],
|
50 |
num_beams=4,
|