adutchscotsman commited on
Commit
67a8165
1 Parent(s): 0082dcd

Trained LunarLander for 1 million steps

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 274.15 +/- 16.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6d05f02200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6d05f02290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6d05f02320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6d05f023b0>", "_build": "<function ActorCriticPolicy._build at 0x7c6d05f02440>", "forward": "<function ActorCriticPolicy.forward at 0x7c6d05f024d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6d05f02560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6d05f025f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c6d05f02680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6d05f02710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6d05f027a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6d05f02830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c6d05f10940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695931244311330347, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE1ocr2oIoA/vavVvG2Mn75z3zy9szZtPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFjXuVopQWMAWyUTXkBjAF0lEdAnjCHiaRZEHV9lChoBkdAcYBAN5MURGgHTVIBaAhHQJ4zo36yjYZ1fZQoaAZHQG9rag2606ZoB01WAWgIR0CeNX9l2/zrdX2UKGgGR0BwwX7ALy+YaAdNbwFoCEdAnjei8Fpwj3V9lChoBkdAcEO8PWhAW2gHTVgBaAhHQJ47pbA1vVF1fZQoaAZHQHDWO8brC3xoB00wAWgIR0CePgYRNATqdX2UKGgGR0Bi/gYixFAnaAdN6ANoCEdAnkfzhgmZ3XV9lChoBkdAPlpFspG4JGgHS+1oCEdAnkocv7FbV3V9lChoBkdAcI87OVxCIGgHTXcBaAhHQJ5NXqyGBWh1fZQoaAZHQG8BLns9jgBoB01oAWgIR0CeUUQBxPwedX2UKGgGR0BstTrLQokSaAdNHwJoCEdAnlR8tkFwDXV9lChoBkdAbUqLMLWqcWgHTUMBaAhHQJ5XkV0tAcF1fZQoaAZHQHDQRVlwtJ5oB01lAWgIR0CeWZCp3os7dX2UKGgGR0Bx0HXBguyvaAdNRAFoCEdAnlt6AFxGUnV9lChoBkdANrGE9Mbm2mgHTSEBaAhHQJ5eYY3vQWx1fZQoaAZHQGz6Fiay8jBoB01rAWgIR0CeYH1IRRMwdX2UKGgGR0BvJbt5UtI1aAdNNQFoCEdAnmJhBzFMqXV9lChoBkdAbEGEnssxwmgHTS4BaAhHQJ5lSSSvC/J1fZQoaAZHQAavd2xIJ7doB00CAWgIR0CeZr1YyO7ydX2UKGgGR0Byk1IFvAGjaAdNZwFoCEdAnmjXpB5X2nV9lChoBkdAb3VMaCL/CWgHTUUBaAhHQJ5qrs7dSEV1fZQoaAZHQHEU16AvtdBoB01CAWgIR0CebbD7qIJrdX2UKGgGR0Bxt+jIq9XcaAdNYAFoCEdAnm/F3Y+SsHV9lChoBkdAcpVtZV4oqmgHTW0BaAhHQJ5zCWRigCh1fZQoaAZHQHHox5xBE8doB002AWgIR0CedNWbgCOndX2UKGgGR0BCjdlmOEM9aAdL7WgIR0Cedi6Lfk3kdX2UKGgGR0BO5a1LJ0W/aAdL92gIR0Ced/WLP2PDdX2UKGgGR0BwawUnG828aAdNOgFoCEdAnnvlCLMs6XV9lChoBkdAcRIa8pTdcmgHTSoBaAhHQJ5+MPmPo3d1fZQoaAZHQG2xSFXaJyhoB000A2gIR0Cehvkrf+CLdX2UKGgGR0BwNA2ZRbbDaAdNIAFoCEdAnol2qT8pC3V9lChoBkdAbGJjMFEApGgHTR8BaAhHQJ6L9hsqJ/J1fZQoaAZHQHDVcr7O3UhoB01MAWgIR0Cej3GTcIqtdX2UKGgGR0Bq1cfozN2UaAdNTwFoCEdAnpFWXXyy2XV9lChoBkdAbzktGNJe3WgHTWQBaAhHQJ6TZum78Nx1fZQoaAZHQHDi6n3ta6loB01eAWgIR0CelojrAxi5dX2UKGgGR0Bwbidsi0OWaAdNQAFoCEdAnphZjx0+1XV9lChoBkdAcgiMoMKCx2gHTUIBaAhHQJ6aO3Zwn6V1fZQoaAZHQHD7BTGYKIBoB02xAWgIR0Cend+glF+edX2UKGgGR0BxkC4qgAZLaAdNaAFoCEdAnp/qYRdyDXV9lChoBkdAPLIAn2Iwd2gHTRcBaAhHQJ6hg3tKIzp1fZQoaAZHQG7chQFcIJJoB01SAWgIR0CepJrDqGDddX2UKGgGR0Bwq3onrpqzaAdNFQNoCEdAnqklAmiQDHV9lChoBkdAawY8UVSGamgHTWABaAhHQJ6sRZuAI6d1fZQoaAZHQHCK9h3JPqNoB01cAWgIR0CerlPKuB+XdX2UKGgGR0BxO8slLOAzaAdNSgFoCEdAnrAxQN0/4nV9lChoBkdAQU6EWZZ0S2gHS/toCEdAnrLERe1KG3V9lChoBkdAb9z1zySV4WgHTVYBaAhHQJ60wVKwpvx1fZQoaAZHQGxH3EAHVwxoB001AWgIR0Cetv7CzkZKdX2UKGgGR0BuIvwiJO32aAdNVAFoCEdAnrsiOinHenV9lChoBkdAcEBGhEjPfWgHTVQBaAhHQJ69wQ9RrJt1fZQoaAZHQGw0zYEnssxoB006AWgIR0CewFtNSIgvdX2UKGgGR0Bw7krupjtpaAdNigFoCEdAnsWf6CUX53V9lChoBkdAcc2yCnP3SWgHTUEBaAhHQJ7Ibdl/Yrd1fZQoaAZHQG7naJqIrOJoB01iAWgIR0Cey6FRHf/FdX2UKGgGR0Bt5xdOZb6haAdNSQFoCEdAns77mlqJuXV9lChoBkdAcKUK4hEBsGgHTUQBaAhHQJ7Q23I+4b11fZQoaAZHQG+/NFKCg9NoB01YAWgIR0Ce0vPYnOSodX2UKGgGR0BxRRAgPmPpaAdNfQFoCEdAntZXUtqYZ3V9lChoBkdAb1q3G4qgAmgHTWgBaAhHQJ7YbyZrpJR1fZQoaAZHQHAQBzV+Zw5oB002AWgIR0Ce2jeJHiFTdX2UKGgGR0BuAKvq1PWQaAdNLwFoCEdAnt0LupjtonV9lChoBkdAbvNC7btZ3mgHTUIBaAhHQJ7e8rjHXEt1fZQoaAZHQGxmFEqlP8BoB007AWgIR0Ce4NF9roGIdX2UKGgGR0Bsee4uscQzaAdNNwFoCEdAnuKtuYQarHV9lChoBkdAcPx3IMjNZGgHTUIBaAhHQJ7lm3H7xd91fZQoaAZHQG+/6tLcsUZoB01rAWgIR0Ce58BGQSzxdX2UKGgGR0Bqypgb6xgRaAdNQgFoCEdAnumKKpDNQnV9lChoBkdAUcLuAqd6LWgHTR8BaAhHQJ7srOs1baB1fZQoaAZHQHL1gbADaGpoB01lAWgIR0Ce718pTdcjdX2UKGgGR0BwRgrJ8v25aAdNRwFoCEdAnvHXnU2DQXV9lChoBkdAcXwHpKSPl2gHTWUBaAhHQJ72mndfsu51fZQoaAZHQHB2GFJxvNxoB01YAWgIR0Ce+eZuhsZYdX2UKGgGR0Btw0stkFwDaAdNMgFoCEdAnv0lGPPszHV9lChoBkdAcIAuWKMvRWgHTUsBaAhHQJ8CiYCyQgd1fZQoaAZHQG7ufLTx5LRoB01aAWgIR0CfBbZ5iVjadX2UKGgGR0Bx+Kndfsu4aAdNRgFoCEdAnwi5aRp1zXV9lChoBkdAccaaX8fmtGgHTWcBaAhHQJ8Nu8XenAJ1fZQoaAZHQGyWdgOSW7hoB01XAWgIR0CfEKJKJ2t/dX2UKGgGR0BwmI7ihnJ1aAdNQwFoCEdAnxNO4XoC+3V9lChoBkdAcNYGrS3LFGgHTUcBaAhHQJ8WyWw/xDt1fZQoaAZHQG9hIWP91lpoB00uAWgIR0CfGHdU83dcdX2UKGgGR0BuTuXVsk6caAdNOQFoCEdAnxpQ3o9s8HV9lChoBkdAb0/MRpUPx2gHTeYBaAhHQJ8eS1Vo6CF1fZQoaAZHQEbA1Z1V5rxoB0vuaAhHQJ8fn8R+SbJ1fZQoaAZHQHA8k30f5k9oB01IAWgIR0CfIX/4qPOqdX2UKGgGR0Bt/TQAuIykaAdNUgFoCEdAnySFQl8gIXV9lChoBkdAcUPbXYlIE2gHTSYBaAhHQJ8mLSBshxJ1fZQoaAZHQG6Aj4HoouxoB006AWgIR0CfJ/Z1V5rydX2UKGgGR0BxUiLUCq6waAdNQQFoCEdAnysGU0Nz83V9lChoBkdAcDhAWSEDhmgHTSgBaAhHQJ8ssvYe1a51fZQoaAZHQGP9qc3EQ5FoB03oA2gIR0CfM6UJv5xjdX2UKGgGR0ByuVjSXt0FaAdNXgFoCEdAnzWkY0l7dHV9lChoBkdAcExB/qgRLGgHTT4BaAhHQJ83dP8AJcB1fZQoaAZHQHBD60Y0l7doB01MAWgIR0CfOpB5HEuQdX2UKGgGR0BtU4WDYh+waAdNOAFoCEdAnzxf0yxiX3V9lChoBkdAbkz5nlGPP2gHTUwBaAhHQJ8+xSsKb8Z1fZQoaAZHQHFgpNj9XLhoB013AWgIR0CfQv5GjKxLdX2UKGgGR0Bv9gvi97F9aAdNOAFoCEdAn0VV89fTkXV9lChoBkdAcCJzw+dK/WgHTVMBaAhHQJ9IJwPy08h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRloDNesBrJHSIXxeF/9F71QCMA2luY5SKEBvKkrftWWEXxKURm8NJtmF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:420bf70640c0ed129bb1fd4e619b50199f2f30f699bff2dc8fa2298512eccdae
3
+ size 146331
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6d05f02200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6d05f02290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6d05f02320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6d05f023b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c6d05f02440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c6d05f024d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6d05f02560>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6d05f025f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c6d05f02680>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6d05f02710>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6d05f027a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6d05f02830>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c6d05f10940>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1695931244311330347,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE1ocr2oIoA/vavVvG2Mn75z3zy9szZtPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFjXuVopQWMAWyUTXkBjAF0lEdAnjCHiaRZEHV9lChoBkdAcYBAN5MURGgHTVIBaAhHQJ4zo36yjYZ1fZQoaAZHQG9rag2606ZoB01WAWgIR0CeNX9l2/zrdX2UKGgGR0BwwX7ALy+YaAdNbwFoCEdAnjei8Fpwj3V9lChoBkdAcEO8PWhAW2gHTVgBaAhHQJ47pbA1vVF1fZQoaAZHQHDWO8brC3xoB00wAWgIR0CePgYRNATqdX2UKGgGR0Bi/gYixFAnaAdN6ANoCEdAnkfzhgmZ3XV9lChoBkdAPlpFspG4JGgHS+1oCEdAnkocv7FbV3V9lChoBkdAcI87OVxCIGgHTXcBaAhHQJ5NXqyGBWh1fZQoaAZHQG8BLns9jgBoB01oAWgIR0CeUUQBxPwedX2UKGgGR0BstTrLQokSaAdNHwJoCEdAnlR8tkFwDXV9lChoBkdAbUqLMLWqcWgHTUMBaAhHQJ5XkV0tAcF1fZQoaAZHQHDQRVlwtJ5oB01lAWgIR0CeWZCp3os7dX2UKGgGR0Bx0HXBguyvaAdNRAFoCEdAnlt6AFxGUnV9lChoBkdANrGE9Mbm2mgHTSEBaAhHQJ5eYY3vQWx1fZQoaAZHQGz6Fiay8jBoB01rAWgIR0CeYH1IRRMwdX2UKGgGR0BvJbt5UtI1aAdNNQFoCEdAnmJhBzFMqXV9lChoBkdAbEGEnssxwmgHTS4BaAhHQJ5lSSSvC/J1fZQoaAZHQAavd2xIJ7doB00CAWgIR0CeZr1YyO7ydX2UKGgGR0Byk1IFvAGjaAdNZwFoCEdAnmjXpB5X2nV9lChoBkdAb3VMaCL/CWgHTUUBaAhHQJ5qrs7dSEV1fZQoaAZHQHEU16AvtdBoB01CAWgIR0CebbD7qIJrdX2UKGgGR0Bxt+jIq9XcaAdNYAFoCEdAnm/F3Y+SsHV9lChoBkdAcpVtZV4oqmgHTW0BaAhHQJ5zCWRigCh1fZQoaAZHQHHox5xBE8doB002AWgIR0CedNWbgCOndX2UKGgGR0BCjdlmOEM9aAdL7WgIR0Cedi6Lfk3kdX2UKGgGR0BO5a1LJ0W/aAdL92gIR0Ced/WLP2PDdX2UKGgGR0BwawUnG828aAdNOgFoCEdAnnvlCLMs6XV9lChoBkdAcRIa8pTdcmgHTSoBaAhHQJ5+MPmPo3d1fZQoaAZHQG2xSFXaJyhoB000A2gIR0Cehvkrf+CLdX2UKGgGR0BwNA2ZRbbDaAdNIAFoCEdAnol2qT8pC3V9lChoBkdAbGJjMFEApGgHTR8BaAhHQJ6L9hsqJ/J1fZQoaAZHQHDVcr7O3UhoB01MAWgIR0Cej3GTcIqtdX2UKGgGR0Bq1cfozN2UaAdNTwFoCEdAnpFWXXyy2XV9lChoBkdAbzktGNJe3WgHTWQBaAhHQJ6TZum78Nx1fZQoaAZHQHDi6n3ta6loB01eAWgIR0CelojrAxi5dX2UKGgGR0Bwbidsi0OWaAdNQAFoCEdAnphZjx0+1XV9lChoBkdAcgiMoMKCx2gHTUIBaAhHQJ6aO3Zwn6V1fZQoaAZHQHD7BTGYKIBoB02xAWgIR0Cend+glF+edX2UKGgGR0BxkC4qgAZLaAdNaAFoCEdAnp/qYRdyDXV9lChoBkdAPLIAn2Iwd2gHTRcBaAhHQJ6hg3tKIzp1fZQoaAZHQG7chQFcIJJoB01SAWgIR0CepJrDqGDddX2UKGgGR0Bwq3onrpqzaAdNFQNoCEdAnqklAmiQDHV9lChoBkdAawY8UVSGamgHTWABaAhHQJ6sRZuAI6d1fZQoaAZHQHCK9h3JPqNoB01cAWgIR0CerlPKuB+XdX2UKGgGR0BxO8slLOAzaAdNSgFoCEdAnrAxQN0/4nV9lChoBkdAQU6EWZZ0S2gHS/toCEdAnrLERe1KG3V9lChoBkdAb9z1zySV4WgHTVYBaAhHQJ60wVKwpvx1fZQoaAZHQGxH3EAHVwxoB001AWgIR0Cetv7CzkZKdX2UKGgGR0BuIvwiJO32aAdNVAFoCEdAnrsiOinHenV9lChoBkdAcEBGhEjPfWgHTVQBaAhHQJ69wQ9RrJt1fZQoaAZHQGw0zYEnssxoB006AWgIR0CewFtNSIgvdX2UKGgGR0Bw7krupjtpaAdNigFoCEdAnsWf6CUX53V9lChoBkdAcc2yCnP3SWgHTUEBaAhHQJ7Ibdl/Yrd1fZQoaAZHQG7naJqIrOJoB01iAWgIR0Cey6FRHf/FdX2UKGgGR0Bt5xdOZb6haAdNSQFoCEdAns77mlqJuXV9lChoBkdAcKUK4hEBsGgHTUQBaAhHQJ7Q23I+4b11fZQoaAZHQG+/NFKCg9NoB01YAWgIR0Ce0vPYnOSodX2UKGgGR0BxRRAgPmPpaAdNfQFoCEdAntZXUtqYZ3V9lChoBkdAb1q3G4qgAmgHTWgBaAhHQJ7YbyZrpJR1fZQoaAZHQHAQBzV+Zw5oB002AWgIR0Ce2jeJHiFTdX2UKGgGR0BuAKvq1PWQaAdNLwFoCEdAnt0LupjtonV9lChoBkdAbvNC7btZ3mgHTUIBaAhHQJ7e8rjHXEt1fZQoaAZHQGxmFEqlP8BoB007AWgIR0Ce4NF9roGIdX2UKGgGR0Bsee4uscQzaAdNNwFoCEdAnuKtuYQarHV9lChoBkdAcPx3IMjNZGgHTUIBaAhHQJ7lm3H7xd91fZQoaAZHQG+/6tLcsUZoB01rAWgIR0Ce58BGQSzxdX2UKGgGR0Bqypgb6xgRaAdNQgFoCEdAnumKKpDNQnV9lChoBkdAUcLuAqd6LWgHTR8BaAhHQJ7srOs1baB1fZQoaAZHQHL1gbADaGpoB01lAWgIR0Ce718pTdcjdX2UKGgGR0BwRgrJ8v25aAdNRwFoCEdAnvHXnU2DQXV9lChoBkdAcXwHpKSPl2gHTWUBaAhHQJ72mndfsu51fZQoaAZHQHB2GFJxvNxoB01YAWgIR0Ce+eZuhsZYdX2UKGgGR0Btw0stkFwDaAdNMgFoCEdAnv0lGPPszHV9lChoBkdAcIAuWKMvRWgHTUsBaAhHQJ8CiYCyQgd1fZQoaAZHQG7ufLTx5LRoB01aAWgIR0CfBbZ5iVjadX2UKGgGR0Bx+Kndfsu4aAdNRgFoCEdAnwi5aRp1zXV9lChoBkdAccaaX8fmtGgHTWcBaAhHQJ8Nu8XenAJ1fZQoaAZHQGyWdgOSW7hoB01XAWgIR0CfEKJKJ2t/dX2UKGgGR0BwmI7ihnJ1aAdNQwFoCEdAnxNO4XoC+3V9lChoBkdAcNYGrS3LFGgHTUcBaAhHQJ8WyWw/xDt1fZQoaAZHQG9hIWP91lpoB00uAWgIR0CfGHdU83dcdX2UKGgGR0BuTuXVsk6caAdNOQFoCEdAnxpQ3o9s8HV9lChoBkdAb0/MRpUPx2gHTeYBaAhHQJ8eS1Vo6CF1fZQoaAZHQEbA1Z1V5rxoB0vuaAhHQJ8fn8R+SbJ1fZQoaAZHQHA8k30f5k9oB01IAWgIR0CfIX/4qPOqdX2UKGgGR0Bt/TQAuIykaAdNUgFoCEdAnySFQl8gIXV9lChoBkdAcUPbXYlIE2gHTSYBaAhHQJ8mLSBshxJ1fZQoaAZHQG6Aj4HoouxoB006AWgIR0CfJ/Z1V5rydX2UKGgGR0BxUiLUCq6waAdNQQFoCEdAnysGU0Nz83V9lChoBkdAcDhAWSEDhmgHTSgBaAhHQJ8ssvYe1a51fZQoaAZHQGP9qc3EQ5FoB03oA2gIR0CfM6UJv5xjdX2UKGgGR0ByuVjSXt0FaAdNXgFoCEdAnzWkY0l7dHV9lChoBkdAcExB/qgRLGgHTT4BaAhHQJ83dP8AJcB1fZQoaAZHQHBD60Y0l7doB01MAWgIR0CfOpB5HEuQdX2UKGgGR0BtU4WDYh+waAdNOAFoCEdAnzxf0yxiX3V9lChoBkdAbkz5nlGPP2gHTUwBaAhHQJ8+xSsKb8Z1fZQoaAZHQHFgpNj9XLhoB013AWgIR0CfQv5GjKxLdX2UKGgGR0Bv9gvi97F9aAdNOAFoCEdAn0VV89fTkXV9lChoBkdAcCJzw+dK/WgHTVMBaAhHQJ9IJwPy08h1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRloDNesBrJHSIXxeF/9F71QCMA2luY5SKEBvKkrftWWEXxKURm8NJtmF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": "Generator(PCG64)"
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:840832efa9ea03769668e6808cc8ad09889703c4e4c9fad2e958e11782b7799b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3afad495548bc904bba0c1efe582e6c563ccf58244b4138df3ef7b20a4c41426
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (166 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.148396, "std_reward": 16.89962471317711, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-28T20:38:42.625718"}