adriansanz commited on
Commit
0fb95c4
1 Parent(s): 6264fd9

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,877 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:828
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Comunicació prèvia per l'execució de cales, pous i sondejos, en
31
+ terreny privat, previs a l'actuació definitiva.
32
+ sentences:
33
+ - Quin és el requisit per a l'execució de les obres en terreny privat?
34
+ - Quin és el propòsit del tràmit de rectificació de dades personals?
35
+ - Quin és el requisit per a la crema en zones de conservació?
36
+ - source_sentence: En el mateix tràmit també es pot actualitzar el canvi de domicili
37
+ o dades personals, si escau.
38
+ sentences:
39
+ - Quins tributs puc domiciliar amb aquest tràmit?
40
+ - Quin és el compromís del titular de l'activitat en la Declaració responsable?
41
+ - Quin és el tràmit que permet actualitzar les dades personals?
42
+ - source_sentence: El reconeixement administratiu del dret comunicat es produeix salvat
43
+ el dret de propietat, sens perjudici del de tercers ni de les competències d’altres
44
+ organismes i administracions.
45
+ sentences:
46
+ - Quin és el tràmit que permet una major transparència en la gestió dels animals
47
+ domèstics?
48
+ - Quin és el requisit per considerar una tala de masses arbòries?
49
+ - Quin és el reconeixement administratiu del dret comunicat?
50
+ - source_sentence: El seu objecte és que -prèviament a la seva execució material-
51
+ l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament,
52
+ així com a les ordenances municipals.
53
+ sentences:
54
+ - Quin és el resultat de rectificar les meves dades personals?
55
+ - Quin és el paper de les llicències urbanístiques en la instal·lació de construccions
56
+ auxiliars o mòduls prefabricats?
57
+ - Quin és l'objectiu de l'Ajuntament en aquest tràmit?
58
+ - source_sentence: 'Permet sol·licitar l’autorització per a l’ús comú especial de
59
+ la via pública per a reserves temporals d’estacionament i espai públic per: càrrega/descàrrega
60
+ de materials diversos davant d''una obra;'
61
+ sentences:
62
+ - Quin és el propòsit de les actuacions de manteniment d'elements de façana i cobertes?
63
+ - Quin és el tràmit per canviar el domicili del permís de conducció i del permís
64
+ de circulació?
65
+ - Quins són els materials que es poden càrregar/descarregar en l'ocupació i reserves
66
+ temporals amb càrrega/descàrrega de materials?
67
+ model-index:
68
+ - name: SentenceTransformer based on BAAI/bge-m3
69
+ results:
70
+ - task:
71
+ type: information-retrieval
72
+ name: Information Retrieval
73
+ dataset:
74
+ name: dim 1024
75
+ type: dim_1024
76
+ metrics:
77
+ - type: cosine_accuracy@1
78
+ value: 0.1956521739130435
79
+ name: Cosine Accuracy@1
80
+ - type: cosine_accuracy@3
81
+ value: 0.5434782608695652
82
+ name: Cosine Accuracy@3
83
+ - type: cosine_accuracy@5
84
+ value: 0.6739130434782609
85
+ name: Cosine Accuracy@5
86
+ - type: cosine_accuracy@10
87
+ value: 0.7717391304347826
88
+ name: Cosine Accuracy@10
89
+ - type: cosine_precision@1
90
+ value: 0.1956521739130435
91
+ name: Cosine Precision@1
92
+ - type: cosine_precision@3
93
+ value: 0.18115942028985504
94
+ name: Cosine Precision@3
95
+ - type: cosine_precision@5
96
+ value: 0.13478260869565215
97
+ name: Cosine Precision@5
98
+ - type: cosine_precision@10
99
+ value: 0.07717391304347823
100
+ name: Cosine Precision@10
101
+ - type: cosine_recall@1
102
+ value: 0.1956521739130435
103
+ name: Cosine Recall@1
104
+ - type: cosine_recall@3
105
+ value: 0.5434782608695652
106
+ name: Cosine Recall@3
107
+ - type: cosine_recall@5
108
+ value: 0.6739130434782609
109
+ name: Cosine Recall@5
110
+ - type: cosine_recall@10
111
+ value: 0.7717391304347826
112
+ name: Cosine Recall@10
113
+ - type: cosine_ndcg@10
114
+ value: 0.48504415203944085
115
+ name: Cosine Ndcg@10
116
+ - type: cosine_mrr@10
117
+ value: 0.39229641131815035
118
+ name: Cosine Mrr@10
119
+ - type: cosine_map@100
120
+ value: 0.4002530280745044
121
+ name: Cosine Map@100
122
+ - task:
123
+ type: information-retrieval
124
+ name: Information Retrieval
125
+ dataset:
126
+ name: dim 768
127
+ type: dim_768
128
+ metrics:
129
+ - type: cosine_accuracy@1
130
+ value: 0.1956521739130435
131
+ name: Cosine Accuracy@1
132
+ - type: cosine_accuracy@3
133
+ value: 0.5543478260869565
134
+ name: Cosine Accuracy@3
135
+ - type: cosine_accuracy@5
136
+ value: 0.6739130434782609
137
+ name: Cosine Accuracy@5
138
+ - type: cosine_accuracy@10
139
+ value: 0.7717391304347826
140
+ name: Cosine Accuracy@10
141
+ - type: cosine_precision@1
142
+ value: 0.1956521739130435
143
+ name: Cosine Precision@1
144
+ - type: cosine_precision@3
145
+ value: 0.18478260869565213
146
+ name: Cosine Precision@3
147
+ - type: cosine_precision@5
148
+ value: 0.13478260869565215
149
+ name: Cosine Precision@5
150
+ - type: cosine_precision@10
151
+ value: 0.07717391304347823
152
+ name: Cosine Precision@10
153
+ - type: cosine_recall@1
154
+ value: 0.1956521739130435
155
+ name: Cosine Recall@1
156
+ - type: cosine_recall@3
157
+ value: 0.5543478260869565
158
+ name: Cosine Recall@3
159
+ - type: cosine_recall@5
160
+ value: 0.6739130434782609
161
+ name: Cosine Recall@5
162
+ - type: cosine_recall@10
163
+ value: 0.7717391304347826
164
+ name: Cosine Recall@10
165
+ - type: cosine_ndcg@10
166
+ value: 0.48804421462232656
167
+ name: Cosine Ndcg@10
168
+ - type: cosine_mrr@10
169
+ value: 0.3962215320910973
170
+ name: Cosine Mrr@10
171
+ - type: cosine_map@100
172
+ value: 0.404212372178018
173
+ name: Cosine Map@100
174
+ - task:
175
+ type: information-retrieval
176
+ name: Information Retrieval
177
+ dataset:
178
+ name: dim 512
179
+ type: dim_512
180
+ metrics:
181
+ - type: cosine_accuracy@1
182
+ value: 0.20652173913043478
183
+ name: Cosine Accuracy@1
184
+ - type: cosine_accuracy@3
185
+ value: 0.5434782608695652
186
+ name: Cosine Accuracy@3
187
+ - type: cosine_accuracy@5
188
+ value: 0.6521739130434783
189
+ name: Cosine Accuracy@5
190
+ - type: cosine_accuracy@10
191
+ value: 0.7608695652173914
192
+ name: Cosine Accuracy@10
193
+ - type: cosine_precision@1
194
+ value: 0.20652173913043478
195
+ name: Cosine Precision@1
196
+ - type: cosine_precision@3
197
+ value: 0.18115942028985504
198
+ name: Cosine Precision@3
199
+ - type: cosine_precision@5
200
+ value: 0.13043478260869562
201
+ name: Cosine Precision@5
202
+ - type: cosine_precision@10
203
+ value: 0.07608695652173911
204
+ name: Cosine Precision@10
205
+ - type: cosine_recall@1
206
+ value: 0.20652173913043478
207
+ name: Cosine Recall@1
208
+ - type: cosine_recall@3
209
+ value: 0.5434782608695652
210
+ name: Cosine Recall@3
211
+ - type: cosine_recall@5
212
+ value: 0.6521739130434783
213
+ name: Cosine Recall@5
214
+ - type: cosine_recall@10
215
+ value: 0.7608695652173914
216
+ name: Cosine Recall@10
217
+ - type: cosine_ndcg@10
218
+ value: 0.4840641874049137
219
+ name: Cosine Ndcg@10
220
+ - type: cosine_mrr@10
221
+ value: 0.39500086266390616
222
+ name: Cosine Mrr@10
223
+ - type: cosine_map@100
224
+ value: 0.4031258766496075
225
+ name: Cosine Map@100
226
+ - task:
227
+ type: information-retrieval
228
+ name: Information Retrieval
229
+ dataset:
230
+ name: dim 256
231
+ type: dim_256
232
+ metrics:
233
+ - type: cosine_accuracy@1
234
+ value: 0.18478260869565216
235
+ name: Cosine Accuracy@1
236
+ - type: cosine_accuracy@3
237
+ value: 0.5434782608695652
238
+ name: Cosine Accuracy@3
239
+ - type: cosine_accuracy@5
240
+ value: 0.6521739130434783
241
+ name: Cosine Accuracy@5
242
+ - type: cosine_accuracy@10
243
+ value: 0.75
244
+ name: Cosine Accuracy@10
245
+ - type: cosine_precision@1
246
+ value: 0.18478260869565216
247
+ name: Cosine Precision@1
248
+ - type: cosine_precision@3
249
+ value: 0.18115942028985504
250
+ name: Cosine Precision@3
251
+ - type: cosine_precision@5
252
+ value: 0.13043478260869562
253
+ name: Cosine Precision@5
254
+ - type: cosine_precision@10
255
+ value: 0.07499999999999998
256
+ name: Cosine Precision@10
257
+ - type: cosine_recall@1
258
+ value: 0.18478260869565216
259
+ name: Cosine Recall@1
260
+ - type: cosine_recall@3
261
+ value: 0.5434782608695652
262
+ name: Cosine Recall@3
263
+ - type: cosine_recall@5
264
+ value: 0.6521739130434783
265
+ name: Cosine Recall@5
266
+ - type: cosine_recall@10
267
+ value: 0.75
268
+ name: Cosine Recall@10
269
+ - type: cosine_ndcg@10
270
+ value: 0.4702420475154915
271
+ name: Cosine Ndcg@10
272
+ - type: cosine_mrr@10
273
+ value: 0.3799301242236025
274
+ name: Cosine Mrr@10
275
+ - type: cosine_map@100
276
+ value: 0.38860307402910876
277
+ name: Cosine Map@100
278
+ - task:
279
+ type: information-retrieval
280
+ name: Information Retrieval
281
+ dataset:
282
+ name: dim 128
283
+ type: dim_128
284
+ metrics:
285
+ - type: cosine_accuracy@1
286
+ value: 0.22826086956521738
287
+ name: Cosine Accuracy@1
288
+ - type: cosine_accuracy@3
289
+ value: 0.5434782608695652
290
+ name: Cosine Accuracy@3
291
+ - type: cosine_accuracy@5
292
+ value: 0.6956521739130435
293
+ name: Cosine Accuracy@5
294
+ - type: cosine_accuracy@10
295
+ value: 0.782608695652174
296
+ name: Cosine Accuracy@10
297
+ - type: cosine_precision@1
298
+ value: 0.22826086956521738
299
+ name: Cosine Precision@1
300
+ - type: cosine_precision@3
301
+ value: 0.18115942028985504
302
+ name: Cosine Precision@3
303
+ - type: cosine_precision@5
304
+ value: 0.13913043478260867
305
+ name: Cosine Precision@5
306
+ - type: cosine_precision@10
307
+ value: 0.07826086956521737
308
+ name: Cosine Precision@10
309
+ - type: cosine_recall@1
310
+ value: 0.22826086956521738
311
+ name: Cosine Recall@1
312
+ - type: cosine_recall@3
313
+ value: 0.5434782608695652
314
+ name: Cosine Recall@3
315
+ - type: cosine_recall@5
316
+ value: 0.6956521739130435
317
+ name: Cosine Recall@5
318
+ - type: cosine_recall@10
319
+ value: 0.782608695652174
320
+ name: Cosine Recall@10
321
+ - type: cosine_ndcg@10
322
+ value: 0.5045819494113778
323
+ name: Cosine Ndcg@10
324
+ - type: cosine_mrr@10
325
+ value: 0.41489820565907526
326
+ name: Cosine Mrr@10
327
+ - type: cosine_map@100
328
+ value: 0.4206777643300118
329
+ name: Cosine Map@100
330
+ - task:
331
+ type: information-retrieval
332
+ name: Information Retrieval
333
+ dataset:
334
+ name: dim 64
335
+ type: dim_64
336
+ metrics:
337
+ - type: cosine_accuracy@1
338
+ value: 0.17391304347826086
339
+ name: Cosine Accuracy@1
340
+ - type: cosine_accuracy@3
341
+ value: 0.4891304347826087
342
+ name: Cosine Accuracy@3
343
+ - type: cosine_accuracy@5
344
+ value: 0.6630434782608695
345
+ name: Cosine Accuracy@5
346
+ - type: cosine_accuracy@10
347
+ value: 0.7608695652173914
348
+ name: Cosine Accuracy@10
349
+ - type: cosine_precision@1
350
+ value: 0.17391304347826086
351
+ name: Cosine Precision@1
352
+ - type: cosine_precision@3
353
+ value: 0.16304347826086954
354
+ name: Cosine Precision@3
355
+ - type: cosine_precision@5
356
+ value: 0.1326086956521739
357
+ name: Cosine Precision@5
358
+ - type: cosine_precision@10
359
+ value: 0.07608695652173911
360
+ name: Cosine Precision@10
361
+ - type: cosine_recall@1
362
+ value: 0.17391304347826086
363
+ name: Cosine Recall@1
364
+ - type: cosine_recall@3
365
+ value: 0.4891304347826087
366
+ name: Cosine Recall@3
367
+ - type: cosine_recall@5
368
+ value: 0.6630434782608695
369
+ name: Cosine Recall@5
370
+ - type: cosine_recall@10
371
+ value: 0.7608695652173914
372
+ name: Cosine Recall@10
373
+ - type: cosine_ndcg@10
374
+ value: 0.4628441336923734
375
+ name: Cosine Ndcg@10
376
+ - type: cosine_mrr@10
377
+ value: 0.36670548654244295
378
+ name: Cosine Mrr@10
379
+ - type: cosine_map@100
380
+ value: 0.37290616382203134
381
+ name: Cosine Map@100
382
+ ---
383
+
384
+ # SentenceTransformer based on BAAI/bge-m3
385
+
386
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
387
+
388
+ ## Model Details
389
+
390
+ ### Model Description
391
+ - **Model Type:** Sentence Transformer
392
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
393
+ - **Maximum Sequence Length:** 8192 tokens
394
+ - **Output Dimensionality:** 1024 tokens
395
+ - **Similarity Function:** Cosine Similarity
396
+ - **Training Dataset:**
397
+ - json
398
+ <!-- - **Language:** Unknown -->
399
+ <!-- - **License:** Unknown -->
400
+
401
+ ### Model Sources
402
+
403
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
404
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
405
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
406
+
407
+ ### Full Model Architecture
408
+
409
+ ```
410
+ SentenceTransformer(
411
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
412
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
413
+ (2): Normalize()
414
+ )
415
+ ```
416
+
417
+ ## Usage
418
+
419
+ ### Direct Usage (Sentence Transformers)
420
+
421
+ First install the Sentence Transformers library:
422
+
423
+ ```bash
424
+ pip install -U sentence-transformers
425
+ ```
426
+
427
+ Then you can load this model and run inference.
428
+ ```python
429
+ from sentence_transformers import SentenceTransformer
430
+
431
+ # Download from the 🤗 Hub
432
+ model = SentenceTransformer("adriansanz/sqv-v3")
433
+ # Run inference
434
+ sentences = [
435
+ "Permet sol·licitar l’autorització per a l’ús comú especial de la via pública per a reserves temporals d’estacionament i espai públic per: càrrega/descàrrega de materials diversos davant d'una obra;",
436
+ "Quins són els materials que es poden càrregar/descarregar en l'ocupació i reserves temporals amb càrrega/descàrrega de materials?",
437
+ 'Quin és el tràmit per canviar el domicili del permís de conducció i del permís de circulació?',
438
+ ]
439
+ embeddings = model.encode(sentences)
440
+ print(embeddings.shape)
441
+ # [3, 1024]
442
+
443
+ # Get the similarity scores for the embeddings
444
+ similarities = model.similarity(embeddings, embeddings)
445
+ print(similarities.shape)
446
+ # [3, 3]
447
+ ```
448
+
449
+ <!--
450
+ ### Direct Usage (Transformers)
451
+
452
+ <details><summary>Click to see the direct usage in Transformers</summary>
453
+
454
+ </details>
455
+ -->
456
+
457
+ <!--
458
+ ### Downstream Usage (Sentence Transformers)
459
+
460
+ You can finetune this model on your own dataset.
461
+
462
+ <details><summary>Click to expand</summary>
463
+
464
+ </details>
465
+ -->
466
+
467
+ <!--
468
+ ### Out-of-Scope Use
469
+
470
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
471
+ -->
472
+
473
+ ## Evaluation
474
+
475
+ ### Metrics
476
+
477
+ #### Information Retrieval
478
+ * Dataset: `dim_1024`
479
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
480
+
481
+ | Metric | Value |
482
+ |:--------------------|:-----------|
483
+ | cosine_accuracy@1 | 0.1957 |
484
+ | cosine_accuracy@3 | 0.5435 |
485
+ | cosine_accuracy@5 | 0.6739 |
486
+ | cosine_accuracy@10 | 0.7717 |
487
+ | cosine_precision@1 | 0.1957 |
488
+ | cosine_precision@3 | 0.1812 |
489
+ | cosine_precision@5 | 0.1348 |
490
+ | cosine_precision@10 | 0.0772 |
491
+ | cosine_recall@1 | 0.1957 |
492
+ | cosine_recall@3 | 0.5435 |
493
+ | cosine_recall@5 | 0.6739 |
494
+ | cosine_recall@10 | 0.7717 |
495
+ | cosine_ndcg@10 | 0.485 |
496
+ | cosine_mrr@10 | 0.3923 |
497
+ | **cosine_map@100** | **0.4003** |
498
+
499
+ #### Information Retrieval
500
+ * Dataset: `dim_768`
501
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
502
+
503
+ | Metric | Value |
504
+ |:--------------------|:-----------|
505
+ | cosine_accuracy@1 | 0.1957 |
506
+ | cosine_accuracy@3 | 0.5543 |
507
+ | cosine_accuracy@5 | 0.6739 |
508
+ | cosine_accuracy@10 | 0.7717 |
509
+ | cosine_precision@1 | 0.1957 |
510
+ | cosine_precision@3 | 0.1848 |
511
+ | cosine_precision@5 | 0.1348 |
512
+ | cosine_precision@10 | 0.0772 |
513
+ | cosine_recall@1 | 0.1957 |
514
+ | cosine_recall@3 | 0.5543 |
515
+ | cosine_recall@5 | 0.6739 |
516
+ | cosine_recall@10 | 0.7717 |
517
+ | cosine_ndcg@10 | 0.488 |
518
+ | cosine_mrr@10 | 0.3962 |
519
+ | **cosine_map@100** | **0.4042** |
520
+
521
+ #### Information Retrieval
522
+ * Dataset: `dim_512`
523
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
524
+
525
+ | Metric | Value |
526
+ |:--------------------|:-----------|
527
+ | cosine_accuracy@1 | 0.2065 |
528
+ | cosine_accuracy@3 | 0.5435 |
529
+ | cosine_accuracy@5 | 0.6522 |
530
+ | cosine_accuracy@10 | 0.7609 |
531
+ | cosine_precision@1 | 0.2065 |
532
+ | cosine_precision@3 | 0.1812 |
533
+ | cosine_precision@5 | 0.1304 |
534
+ | cosine_precision@10 | 0.0761 |
535
+ | cosine_recall@1 | 0.2065 |
536
+ | cosine_recall@3 | 0.5435 |
537
+ | cosine_recall@5 | 0.6522 |
538
+ | cosine_recall@10 | 0.7609 |
539
+ | cosine_ndcg@10 | 0.4841 |
540
+ | cosine_mrr@10 | 0.395 |
541
+ | **cosine_map@100** | **0.4031** |
542
+
543
+ #### Information Retrieval
544
+ * Dataset: `dim_256`
545
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
546
+
547
+ | Metric | Value |
548
+ |:--------------------|:-----------|
549
+ | cosine_accuracy@1 | 0.1848 |
550
+ | cosine_accuracy@3 | 0.5435 |
551
+ | cosine_accuracy@5 | 0.6522 |
552
+ | cosine_accuracy@10 | 0.75 |
553
+ | cosine_precision@1 | 0.1848 |
554
+ | cosine_precision@3 | 0.1812 |
555
+ | cosine_precision@5 | 0.1304 |
556
+ | cosine_precision@10 | 0.075 |
557
+ | cosine_recall@1 | 0.1848 |
558
+ | cosine_recall@3 | 0.5435 |
559
+ | cosine_recall@5 | 0.6522 |
560
+ | cosine_recall@10 | 0.75 |
561
+ | cosine_ndcg@10 | 0.4702 |
562
+ | cosine_mrr@10 | 0.3799 |
563
+ | **cosine_map@100** | **0.3886** |
564
+
565
+ #### Information Retrieval
566
+ * Dataset: `dim_128`
567
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
568
+
569
+ | Metric | Value |
570
+ |:--------------------|:-----------|
571
+ | cosine_accuracy@1 | 0.2283 |
572
+ | cosine_accuracy@3 | 0.5435 |
573
+ | cosine_accuracy@5 | 0.6957 |
574
+ | cosine_accuracy@10 | 0.7826 |
575
+ | cosine_precision@1 | 0.2283 |
576
+ | cosine_precision@3 | 0.1812 |
577
+ | cosine_precision@5 | 0.1391 |
578
+ | cosine_precision@10 | 0.0783 |
579
+ | cosine_recall@1 | 0.2283 |
580
+ | cosine_recall@3 | 0.5435 |
581
+ | cosine_recall@5 | 0.6957 |
582
+ | cosine_recall@10 | 0.7826 |
583
+ | cosine_ndcg@10 | 0.5046 |
584
+ | cosine_mrr@10 | 0.4149 |
585
+ | **cosine_map@100** | **0.4207** |
586
+
587
+ #### Information Retrieval
588
+ * Dataset: `dim_64`
589
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
590
+
591
+ | Metric | Value |
592
+ |:--------------------|:-----------|
593
+ | cosine_accuracy@1 | 0.1739 |
594
+ | cosine_accuracy@3 | 0.4891 |
595
+ | cosine_accuracy@5 | 0.663 |
596
+ | cosine_accuracy@10 | 0.7609 |
597
+ | cosine_precision@1 | 0.1739 |
598
+ | cosine_precision@3 | 0.163 |
599
+ | cosine_precision@5 | 0.1326 |
600
+ | cosine_precision@10 | 0.0761 |
601
+ | cosine_recall@1 | 0.1739 |
602
+ | cosine_recall@3 | 0.4891 |
603
+ | cosine_recall@5 | 0.663 |
604
+ | cosine_recall@10 | 0.7609 |
605
+ | cosine_ndcg@10 | 0.4628 |
606
+ | cosine_mrr@10 | 0.3667 |
607
+ | **cosine_map@100** | **0.3729** |
608
+
609
+ <!--
610
+ ## Bias, Risks and Limitations
611
+
612
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
613
+ -->
614
+
615
+ <!--
616
+ ### Recommendations
617
+
618
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
619
+ -->
620
+
621
+ ## Training Details
622
+
623
+ ### Training Dataset
624
+
625
+ #### json
626
+
627
+ * Dataset: json
628
+ * Size: 828 training samples
629
+ * Columns: <code>positive</code> and <code>anchor</code>
630
+ * Approximate statistics based on the first 828 samples:
631
+ | | positive | anchor |
632
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
633
+ | type | string | string |
634
+ | details | <ul><li>min: 5 tokens</li><li>mean: 41.95 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.81 tokens</li><li>max: 50 tokens</li></ul> |
635
+ * Samples:
636
+ | positive | anchor |
637
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
638
+ | <code>Consultar l'estat tributari d'un contribuent. Us permet consultar l'estat dels rebuts i liquidacions que estan a nom del contribuent titular d'un certificat electrònic, així com els elements que configuren el càlcul per determinar el deute tributari de cadascun d'ells.</code> | <code>Com puc consultar l'estat tributari d'un contribuent?</code> |
639
+ | <code>L'informe facultatiu servirà per tramitar una autorització de residència temporal per arrelament social.</code> | <code>Quin és el tràmit relacionat amb la residència a l'Ajuntament?</code> |
640
+ | <code>Aquesta targeta, és el document que dona dret a persones físiques o jurídiques titulars de vehicles adaptats destinats al transport col·lectiu de persones amb discapacitat...</code> | <code>Quin és el benefici de tenir la targeta d'aparcament de transport col·lectiu per a les persones amb discapacitat?</code> |
641
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
642
+ ```json
643
+ {
644
+ "loss": "MultipleNegativesRankingLoss",
645
+ "matryoshka_dims": [
646
+ 1024,
647
+ 768,
648
+ 512,
649
+ 256,
650
+ 128,
651
+ 64
652
+ ],
653
+ "matryoshka_weights": [
654
+ 1,
655
+ 1,
656
+ 1,
657
+ 1,
658
+ 1,
659
+ 1
660
+ ],
661
+ "n_dims_per_step": -1
662
+ }
663
+ ```
664
+
665
+ ### Training Hyperparameters
666
+ #### Non-Default Hyperparameters
667
+
668
+ - `eval_strategy`: epoch
669
+ - `per_device_train_batch_size`: 16
670
+ - `per_device_eval_batch_size`: 16
671
+ - `gradient_accumulation_steps`: 16
672
+ - `learning_rate`: 2e-05
673
+ - `num_train_epochs`: 5
674
+ - `lr_scheduler_type`: cosine
675
+ - `warmup_ratio`: 0.2
676
+ - `bf16`: True
677
+ - `tf32`: True
678
+ - `load_best_model_at_end`: True
679
+ - `optim`: adamw_torch_fused
680
+ - `batch_sampler`: no_duplicates
681
+
682
+ #### All Hyperparameters
683
+ <details><summary>Click to expand</summary>
684
+
685
+ - `overwrite_output_dir`: False
686
+ - `do_predict`: False
687
+ - `eval_strategy`: epoch
688
+ - `prediction_loss_only`: True
689
+ - `per_device_train_batch_size`: 16
690
+ - `per_device_eval_batch_size`: 16
691
+ - `per_gpu_train_batch_size`: None
692
+ - `per_gpu_eval_batch_size`: None
693
+ - `gradient_accumulation_steps`: 16
694
+ - `eval_accumulation_steps`: None
695
+ - `torch_empty_cache_steps`: None
696
+ - `learning_rate`: 2e-05
697
+ - `weight_decay`: 0.0
698
+ - `adam_beta1`: 0.9
699
+ - `adam_beta2`: 0.999
700
+ - `adam_epsilon`: 1e-08
701
+ - `max_grad_norm`: 1.0
702
+ - `num_train_epochs`: 5
703
+ - `max_steps`: -1
704
+ - `lr_scheduler_type`: cosine
705
+ - `lr_scheduler_kwargs`: {}
706
+ - `warmup_ratio`: 0.2
707
+ - `warmup_steps`: 0
708
+ - `log_level`: passive
709
+ - `log_level_replica`: warning
710
+ - `log_on_each_node`: True
711
+ - `logging_nan_inf_filter`: True
712
+ - `save_safetensors`: True
713
+ - `save_on_each_node`: False
714
+ - `save_only_model`: False
715
+ - `restore_callback_states_from_checkpoint`: False
716
+ - `no_cuda`: False
717
+ - `use_cpu`: False
718
+ - `use_mps_device`: False
719
+ - `seed`: 42
720
+ - `data_seed`: None
721
+ - `jit_mode_eval`: False
722
+ - `use_ipex`: False
723
+ - `bf16`: True
724
+ - `fp16`: False
725
+ - `fp16_opt_level`: O1
726
+ - `half_precision_backend`: auto
727
+ - `bf16_full_eval`: False
728
+ - `fp16_full_eval`: False
729
+ - `tf32`: True
730
+ - `local_rank`: 0
731
+ - `ddp_backend`: None
732
+ - `tpu_num_cores`: None
733
+ - `tpu_metrics_debug`: False
734
+ - `debug`: []
735
+ - `dataloader_drop_last`: False
736
+ - `dataloader_num_workers`: 0
737
+ - `dataloader_prefetch_factor`: None
738
+ - `past_index`: -1
739
+ - `disable_tqdm`: False
740
+ - `remove_unused_columns`: True
741
+ - `label_names`: None
742
+ - `load_best_model_at_end`: True
743
+ - `ignore_data_skip`: False
744
+ - `fsdp`: []
745
+ - `fsdp_min_num_params`: 0
746
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
747
+ - `fsdp_transformer_layer_cls_to_wrap`: None
748
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
749
+ - `deepspeed`: None
750
+ - `label_smoothing_factor`: 0.0
751
+ - `optim`: adamw_torch_fused
752
+ - `optim_args`: None
753
+ - `adafactor`: False
754
+ - `group_by_length`: False
755
+ - `length_column_name`: length
756
+ - `ddp_find_unused_parameters`: None
757
+ - `ddp_bucket_cap_mb`: None
758
+ - `ddp_broadcast_buffers`: False
759
+ - `dataloader_pin_memory`: True
760
+ - `dataloader_persistent_workers`: False
761
+ - `skip_memory_metrics`: True
762
+ - `use_legacy_prediction_loop`: False
763
+ - `push_to_hub`: False
764
+ - `resume_from_checkpoint`: None
765
+ - `hub_model_id`: None
766
+ - `hub_strategy`: every_save
767
+ - `hub_private_repo`: False
768
+ - `hub_always_push`: False
769
+ - `gradient_checkpointing`: False
770
+ - `gradient_checkpointing_kwargs`: None
771
+ - `include_inputs_for_metrics`: False
772
+ - `eval_do_concat_batches`: True
773
+ - `fp16_backend`: auto
774
+ - `push_to_hub_model_id`: None
775
+ - `push_to_hub_organization`: None
776
+ - `mp_parameters`:
777
+ - `auto_find_batch_size`: False
778
+ - `full_determinism`: False
779
+ - `torchdynamo`: None
780
+ - `ray_scope`: last
781
+ - `ddp_timeout`: 1800
782
+ - `torch_compile`: False
783
+ - `torch_compile_backend`: None
784
+ - `torch_compile_mode`: None
785
+ - `dispatch_batches`: None
786
+ - `split_batches`: None
787
+ - `include_tokens_per_second`: False
788
+ - `include_num_input_tokens_seen`: False
789
+ - `neftune_noise_alpha`: None
790
+ - `optim_target_modules`: None
791
+ - `batch_eval_metrics`: False
792
+ - `eval_on_start`: False
793
+ - `eval_use_gather_object`: False
794
+ - `batch_sampler`: no_duplicates
795
+ - `multi_dataset_batch_sampler`: proportional
796
+
797
+ </details>
798
+
799
+ ### Training Logs
800
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
801
+ |:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
802
+ | 0.9231 | 3 | - | 0.3914 | 0.3466 | 0.3625 | 0.3778 | 0.3067 | 0.3810 |
803
+ | 1.8462 | 6 | - | 0.3835 | 0.3940 | 0.3789 | 0.3857 | 0.3407 | 0.3808 |
804
+ | 2.7692 | 9 | - | 0.4028 | 0.4159 | 0.3961 | 0.4098 | 0.3803 | 0.4029 |
805
+ | 3.0769 | 10 | 3.1546 | - | - | - | - | - | - |
806
+ | **4.0** | **13** | **-** | **0.3992** | **0.4209** | **0.3905** | **0.4121** | **0.3806** | **0.4009** |
807
+ | 4.6154 | 15 | - | 0.4003 | 0.4207 | 0.3886 | 0.4031 | 0.3729 | 0.4042 |
808
+
809
+ * The bold row denotes the saved checkpoint.
810
+
811
+ ### Framework Versions
812
+ - Python: 3.10.12
813
+ - Sentence Transformers: 3.1.1
814
+ - Transformers: 4.44.2
815
+ - PyTorch: 2.4.1+cu121
816
+ - Accelerate: 0.35.0.dev0
817
+ - Datasets: 3.0.1
818
+ - Tokenizers: 0.19.1
819
+
820
+ ## Citation
821
+
822
+ ### BibTeX
823
+
824
+ #### Sentence Transformers
825
+ ```bibtex
826
+ @inproceedings{reimers-2019-sentence-bert,
827
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
828
+ author = "Reimers, Nils and Gurevych, Iryna",
829
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
830
+ month = "11",
831
+ year = "2019",
832
+ publisher = "Association for Computational Linguistics",
833
+ url = "https://arxiv.org/abs/1908.10084",
834
+ }
835
+ ```
836
+
837
+ #### MatryoshkaLoss
838
+ ```bibtex
839
+ @misc{kusupati2024matryoshka,
840
+ title={Matryoshka Representation Learning},
841
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
842
+ year={2024},
843
+ eprint={2205.13147},
844
+ archivePrefix={arXiv},
845
+ primaryClass={cs.LG}
846
+ }
847
+ ```
848
+
849
+ #### MultipleNegativesRankingLoss
850
+ ```bibtex
851
+ @misc{henderson2017efficient,
852
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
853
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
854
+ year={2017},
855
+ eprint={1705.00652},
856
+ archivePrefix={arXiv},
857
+ primaryClass={cs.CL}
858
+ }
859
+ ```
860
+
861
+ <!--
862
+ ## Glossary
863
+
864
+ *Clearly define terms in order to be accessible across audiences.*
865
+ -->
866
+
867
+ <!--
868
+ ## Model Card Authors
869
+
870
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
871
+ -->
872
+
873
+ <!--
874
+ ## Model Card Contact
875
+
876
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
877
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a083911c5246970b00ace8770929347fa320442222a74976d8bc3d32282dce0
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }