adriansanz commited on
Commit
cbc2fb7
1 Parent(s): f67cd31

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Aquest text és Varis
14
+ - text: Aquest text és Mobiliari Urbà
15
+ - text: Aquest text és Velocitat
16
+ - text: Aquest text és Parcs i Jardins
17
+ - text: Aquest text és Enllumenat
18
+ inference: true
19
+ ---
20
+
21
+ # SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 128 tokens
37
+ - **Number of Classes:** 14 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------|
51
+ | 0 | <ul><li>'Aquest text és Arbrat'</li><li>'Aquest text és Arbrat'</li><li>'Aquest text és Arbrat'</li></ul> |
52
+ | 1 | <ul><li>'Aquest text és Circulació'</li><li>'Aquest text és Circulació'</li><li>'Aquest text és Circulació'</li></ul> |
53
+ | 2 | <ul><li>'Aquest text és Comentaris'</li><li>'Aquest text és Comentaris'</li><li>'Aquest text és Comentaris'</li></ul> |
54
+ | 3 | <ul><li>'Aquest text és Enllumenat'</li><li>'Aquest text és Enllumenat'</li><li>'Aquest text és Enllumenat'</li></ul> |
55
+ | 4 | <ul><li>'Aquest text és Informació'</li><li>'Aquest text és Informació'</li><li>'Aquest text és Informació'</li></ul> |
56
+ | 5 | <ul><li>'Aquest text és Manteniment'</li><li>'Aquest text és Manteniment'</li><li>'Aquest text és Manteniment'</li></ul> |
57
+ | 6 | <ul><li>'Aquest text és Mobiliari Urbà'</li><li>'Aquest text és Mobiliari Urbà'</li><li>'Aquest text és Mobiliari Urbà'</li></ul> |
58
+ | 7 | <ul><li>'Aquest text és Neteja'</li><li>'Aquest text és Neteja'</li><li>'Aquest text és Neteja'</li></ul> |
59
+ | 8 | <ul><li>'Aquest text és Parcs i Jardins'</li><li>'Aquest text és Parcs i Jardins'</li><li>'Aquest text és Parcs i Jardins'</li></ul> |
60
+ | 9 | <ul><li>'Aquest text és Senyalització'</li><li>'Aquest text és Senyalització'</li><li>'Aquest text és Senyalització'</li></ul> |
61
+ | 10 | <ul><li>'Aquest text és Sorolls'</li><li>'Aquest text és Sorolls'</li><li>'Aquest text és Sorolls'</li></ul> |
62
+ | 11 | <ul><li>'Aquest text és Suggeriments'</li><li>'Aquest text és Suggeriments'</li><li>'Aquest text és Suggeriments'</li></ul> |
63
+ | 12 | <ul><li>'Aquest text és Varis'</li><li>'Aquest text és Varis'</li><li>'Aquest text és Varis'</li></ul> |
64
+ | 13 | <ul><li>'Aquest text és Velocitat'</li><li>'Aquest text és Velocitat'</li><li>'Aquest text és Velocitat'</li></ul> |
65
+
66
+ ## Uses
67
+
68
+ ### Direct Use for Inference
69
+
70
+ First install the SetFit library:
71
+
72
+ ```bash
73
+ pip install setfit
74
+ ```
75
+
76
+ Then you can load this model and run inference.
77
+
78
+ ```python
79
+ from setfit import SetFitModel
80
+
81
+ # Download from the 🤗 Hub
82
+ model = SetFitModel.from_pretrained("adriansanz/setfitemotions")
83
+ # Run inference
84
+ preds = model("Aquest text és Varis")
85
+ ```
86
+
87
+ <!--
88
+ ### Downstream Use
89
+
90
+ *List how someone could finetune this model on their own dataset.*
91
+ -->
92
+
93
+ <!--
94
+ ### Out-of-Scope Use
95
+
96
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
97
+ -->
98
+
99
+ <!--
100
+ ## Bias, Risks and Limitations
101
+
102
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
103
+ -->
104
+
105
+ <!--
106
+ ### Recommendations
107
+
108
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
109
+ -->
110
+
111
+ ## Training Details
112
+
113
+ ### Training Set Metrics
114
+ | Training set | Min | Median | Max |
115
+ |:-------------|:----|:-------|:----|
116
+ | Word count | 4 | 4.2143 | 6 |
117
+
118
+ | Label | Training Sample Count |
119
+ |:------|:----------------------|
120
+ | 0 | 10 |
121
+ | 1 | 10 |
122
+ | 2 | 10 |
123
+ | 3 | 10 |
124
+ | 4 | 10 |
125
+ | 5 | 10 |
126
+ | 6 | 10 |
127
+ | 7 | 10 |
128
+ | 8 | 10 |
129
+ | 9 | 10 |
130
+ | 10 | 10 |
131
+ | 11 | 10 |
132
+ | 12 | 10 |
133
+ | 13 | 10 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (16, 16)
137
+ - num_epochs: (3, 3)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - body_learning_rate: (2e-05, 1e-05)
141
+ - head_learning_rate: 0.01
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - seed: 42
149
+ - eval_max_steps: -1
150
+ - load_best_model_at_end: True
151
+
152
+ ### Training Results
153
+ | Epoch | Step | Training Loss | Validation Loss |
154
+ |:------:|:----:|:-------------:|:---------------:|
155
+ | 0.0009 | 1 | 0.2021 | - |
156
+ | 0.0439 | 50 | 0.0263 | - |
157
+ | 0.0879 | 100 | 0.0032 | - |
158
+ | 0.1318 | 150 | 0.0015 | - |
159
+ | 0.1757 | 200 | 0.0012 | - |
160
+ | 0.2197 | 250 | 0.0007 | - |
161
+ | 0.2636 | 300 | 0.0008 | - |
162
+ | 0.3076 | 350 | 0.0006 | - |
163
+ | 0.3515 | 400 | 0.0003 | - |
164
+ | 0.3954 | 450 | 0.0003 | - |
165
+ | 0.4394 | 500 | 0.0004 | - |
166
+ | 0.4833 | 550 | 0.0005 | - |
167
+ | 0.5272 | 600 | 0.0004 | - |
168
+ | 0.5712 | 650 | 0.0005 | - |
169
+ | 0.6151 | 700 | 0.0005 | - |
170
+ | 0.6591 | 750 | 0.0002 | - |
171
+ | 0.7030 | 800 | 0.0001 | - |
172
+ | 0.7469 | 850 | 0.0004 | - |
173
+ | 0.7909 | 900 | 0.0002 | - |
174
+ | 0.8348 | 950 | 0.0003 | - |
175
+ | 0.8787 | 1000 | 0.0002 | - |
176
+ | 0.9227 | 1050 | 0.0002 | - |
177
+ | 0.9666 | 1100 | 0.0003 | - |
178
+ | 1.0105 | 1150 | 0.0002 | - |
179
+ | 1.0545 | 1200 | 0.0002 | - |
180
+ | 1.0984 | 1250 | 0.0002 | - |
181
+ | 1.1424 | 1300 | 0.0003 | - |
182
+ | 1.1863 | 1350 | 0.0003 | - |
183
+ | 1.2302 | 1400 | 0.0001 | - |
184
+ | 1.2742 | 1450 | 0.0002 | - |
185
+ | 1.3181 | 1500 | 0.0001 | - |
186
+ | 1.3620 | 1550 | 0.0001 | - |
187
+ | 1.4060 | 1600 | 0.0003 | - |
188
+ | 1.4499 | 1650 | 0.0001 | - |
189
+ | 1.4938 | 1700 | 0.0001 | - |
190
+ | 1.5378 | 1750 | 0.0001 | - |
191
+ | 1.5817 | 1800 | 0.0001 | - |
192
+ | 1.6257 | 1850 | 0.0001 | - |
193
+ | 1.6696 | 1900 | 0.0001 | - |
194
+ | 1.7135 | 1950 | 0.0001 | - |
195
+ | 1.7575 | 2000 | 0.0002 | - |
196
+ | 1.8014 | 2050 | 0.0001 | - |
197
+ | 1.8453 | 2100 | 0.0001 | - |
198
+ | 1.8893 | 2150 | 0.0002 | - |
199
+ | 1.9332 | 2200 | 0.0001 | - |
200
+ | 1.9772 | 2250 | 0.0002 | - |
201
+ | 2.0211 | 2300 | 0.0001 | - |
202
+ | 2.0650 | 2350 | 0.0001 | - |
203
+ | 2.1090 | 2400 | 0.0001 | - |
204
+ | 2.1529 | 2450 | 0.0001 | - |
205
+ | 2.1968 | 2500 | 0.0001 | - |
206
+ | 2.2408 | 2550 | 0.0001 | - |
207
+ | 2.2847 | 2600 | 0.0 | - |
208
+ | 2.3286 | 2650 | 0.0001 | - |
209
+ | 2.3726 | 2700 | 0.0001 | - |
210
+ | 2.4165 | 2750 | 0.0001 | - |
211
+ | 2.4605 | 2800 | 0.0001 | - |
212
+ | 2.5044 | 2850 | 0.0001 | - |
213
+ | 2.5483 | 2900 | 0.0001 | - |
214
+ | 2.5923 | 2950 | 0.0001 | - |
215
+ | 2.6362 | 3000 | 0.0001 | - |
216
+ | 2.6801 | 3050 | 0.0001 | - |
217
+ | 2.7241 | 3100 | 0.0001 | - |
218
+ | 2.7680 | 3150 | 0.0001 | - |
219
+ | 2.8120 | 3200 | 0.0001 | - |
220
+ | 2.8559 | 3250 | 0.0001 | - |
221
+ | 2.8998 | 3300 | 0.0001 | - |
222
+ | 2.9438 | 3350 | 0.0001 | - |
223
+ | 2.9877 | 3400 | 0.0001 | - |
224
+
225
+ ### Framework Versions
226
+ - Python: 3.10.12
227
+ - SetFit: 1.0.3
228
+ - Sentence Transformers: 3.0.1
229
+ - Transformers: 4.39.0
230
+ - PyTorch: 2.3.1+cu121
231
+ - Datasets: 2.20.0
232
+ - Tokenizers: 0.15.2
233
+
234
+ ## Citation
235
+
236
+ ### BibTeX
237
+ ```bibtex
238
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
239
+ doi = {10.48550/ARXIV.2209.11055},
240
+ url = {https://arxiv.org/abs/2209.11055},
241
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
242
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
243
+ title = {Efficient Few-Shot Learning Without Prompts},
244
+ publisher = {arXiv},
245
+ year = {2022},
246
+ copyright = {Creative Commons Attribution 4.0 International}
247
+ }
248
+ ```
249
+
250
+ <!--
251
+ ## Glossary
252
+
253
+ *Clearly define terms in order to be accessible across audiences.*
254
+ -->
255
+
256
+ <!--
257
+ ## Model Card Authors
258
+
259
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
260
+ -->
261
+
262
+ <!--
263
+ ## Model Card Contact
264
+
265
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
266
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.39.0",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fade9880cdb07c2f408d9895990e0085e4d73b03e6fc881fa83bc047ad598804
3
+ size 1112197096
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9842ae3c76339a07acbf394e51c5e35f5e4384db873762544b174c4771cb67c1
3
+ size 87079
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }